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Abstract

Experimental results on the fission properties of nuclei close to *4Fm show sudden and laige changes
with a change of only one or two neutrons or protons. The nucleus ?Fm, .or instance, undergoes
symmetric fission with & half-life of about 0.4 ms and a kinetic-energy distribution peaked at about 235
MeV thereas Fm undergoes asymmetric fission with a half-life of about 3 h and a kinetic-energy
distribution peaked at about 200 MeV. Qualitatively, these sudden changes have been pastulated to be
due to the emergence of fragment shells in symmetric-fission products close to '3?Sn. Here we present
a quantitative calculation that shows where high-kinetic-energy symmetric fimion occurs and why it
is associated with a sudden and large decrease in fission half-lives. We base our study on calculations
of potential-energy surfaces in the macroscopic-microscopic model and a semi-empirical model for the
nuclear inertia. For the macroscopic part we use a Yukawa-plus-exponential (finite-range) model and
for the microscopic part a folded-Yukawa (diffuse-surface) ningle-particle potential. We use the three-
quadratic-surface parameterization to generate the shapes for which the potentinl-energy surfaces are
calculated. The use of this parameterization and the use of the finite-renge macroscopic mode; allows
for Lhe study of two touching spheres and similar shapes. Since Lhese shapes are thought o correspond
to the scission shapes for the high-kinetic-energy events it in of crucial importance that a conti ‘uous
sequence of shapes leading from the nuclear ground state Lo these configurations can be studied within
the framework of the model.

We present Lhe results of the calculations in terms of potential-energy surfaces and fission half-lives
for heavy even nuclei. The surfaces are dinplayed in the form of contour diagrams as functions of Ltwo
moments of the s..ape. They clearly show the appearance of a arcond fission valley, which leads to
scinsion configurations close Lo twn touching spheres, for fissioning systema in the vicinity of ?%*Fm
Finsion through this new valley leads to much shorter fission half-liven than fission through the old
valley.

TPermanent Address: P Mollrr Scientific Computing and Graphics, P. $). Hox 1440, Los Alamos, New Mexicn
87544, USA



P. Moller, J. R. Niz, W. J. Sunatecki/From ground state lo fission 2

1 Introduction

The zdvent of the macroscopic-microscopic Strutinsky -hell-correction method !?) about 20
years ago made possible detailed theoretical studies of the fission process. With this method
th: potential energy of a nucleus can be calculated for arbritrary shapes, within given shape
parameterizations. Coupled with a wealth of new experimental results this has led to an
enormous increase in our understanding of nuclear shape changes during fission and also to
a better understanding of the stability of elements at the end of the periodic system. For an
extens;ve review of some of these developments see®). During fission the nucleus changes its
shape from a usually deformed ground-state shape through saddle-point shapes and scission
configuratiorns into two separated fragments. Measurements of fragment mass asymmetries,
fragment kinetic energies, fission half-lives, neutron emission, fission barrier heights and cor-
relations between these quantities yield detailed information about the nucleus during various
stages of the fission process. Here we apply our model to the ?4Fm region for which new and
somewhat unexpected experimental data are available. Qur goal is to und:rstand the nature
of the fission process for the nuclei for which these new data are available and then to make
predictions of properties of other nuclei in the vicinity of ?Fm and of fission half-lives for
heavier nuclei.

1.1 EARLIER THEORETICAL AND EXPERIMENTAL RESULTS

The first success of the macroscopic-microscopic method was the interpretation of fission iso-
meric states as secondary minima in the potential-energy surface, corresponding to very de-
formed, approximately spheroidal shapes with a ratio of about 2/1 of the major to minor axis.
This interpretation was later confirmed by experiments that measured the actual deformation
of the nucleus in its fission isomeric state.

The second minimum in the potential-energy surface splits the fission-barrier saddle point
into two saddles, a first and a second saddle. A next major step in the study of the fission
process for heavy clements was the experimental determination of the heights of the first
and second saddle points and the height of the second minimum relative to the ground state
for a large number of nuclei throughout the actinide region. Calculations of these barrier
heights were performed within the framework of several of the macroscopic- microscopic models.
Results of the calculations usually agreed with the experimental data to within an MeV or so.

The successful theoretical description of the structure of the fission barrier involved con-
siderin,, axially asymmetric shapes at the first saddle point and mass-asymmetric shapes at
the sacond saddle. The long mystery of why actinide nuclei undergo asymmetric fission was
resolved. Mass-asymmetric shape degrees of fraedom lowered the outer saddle by up to 3 MeV
ar 8o for the lighter actinides. The calculated value of the masa-anymmetry coordinate at the
second saddle and the actually measured asymmetry of the fission fragments were found to be
closely correlated for ¢lements throughout the actinide region.

Calculated fission barriers rerved as a starting point for subsequent calculations of fission
half-lives. DBasically two types of mod+ls were used. The first type of madel determines a
one-d:mensional fission barrier from th- multi-dimensional potential-energy surface and uses a
scmi-empirical inertia for the motion in the fission direction. The penetrability of the barrier
and the corresponding fission half-lives are then determined by use of the WKD method. The
second type of mmodel is more complicated. In this model the inertin is caleulated from some
microseopic model, usually a cranking model, and the problem is treated in several dimensions,
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in the sense that \ne penetrability is calculated along several paths in a multi-dimensional
deformation space. Fission is then thought to take place alorg the path with the highest
penetrability. The simpler model has succeeded in calculating the spontaneous-fission half-life
T for even nuclei throughout the actinide region with a root-mean-square deviation of less
than 2 for log(7). The more sophisticated models usually have larger discrepancies.

To determine the stability of heavy elements the half-lives with respect to a- and §-decay
must also be considered. These half-lives can usually be calculated with greater accuracy
than the fission half-lives, since they depend only on nuclear ground-state properties. One
application of models of the macroscopic-microscopic type has been to predict the properties
of elements in the superheavy region, beyond the heaviest presently known elements. The
predicted properties may then serve as a guide to the design of reactions leading to these
elements. Another application is to do calculations of astrophysical interest. In this case one
often has to make calculations for situations that are not accessible to experiment, but whose
results are crucial for the understanding of astrophysical processes. It is then desirable to have
available models that describe well properties of nuclei in the known regions of nuclei and
which one can expect work equally well also outside the regions where the model parameters
were determined.

1.2 THE *'Fm REGION

We shall here not go very far from the regions of known nuclei, but instead focus most of our
attention on the very intcresting region in the vicinity of 24Fm. This nucleus, which has not
been seen experimentally, is of particular interest since in symmetric fission it would divide
int, *wo doubly magic 3Sn nuclei. The ground-state microscopic energy for each of these
13380 nuclei is =12 MeV according to*), giving a combined total microscopic energy of —24
MeV. It is clear from studying tables of the ground-state microscopic energy for Sn isotopes
close to !32Sn th: ¢ the microscopic effects trow rapidly as one approaches '*?Sn. For example,
the ground-state microscopic energy for 12%Sn, the product in the symmetric fission of ?Fm,
is only ~4 MeV. For two nuclei combined it i+ -8 MeV, which is 16 MeV higher than for the
products in the symmetric fission of *Fm. Gue may therefore ask how far from Z = 100 and
N = 164 the effect of the magic or near magic fragment shell= manifest themselves and also
how and at what stage in the fission process the effects become impnrtant, that is, how far
inside the scission point traces of the shell effects that are present in fully separated fragments
remain. We shall now address these questions.

1.2.1 New ezxperimental results in the ¥4 Fm region

Firat let us briefly review the experimental situation. As one sweeps through the actinide
region from uranium to fermium many fission properties vary fairly smoothly. With increasing
proton number there is a decrease in fission-ragment mass asymmetry, an increaae in fission-
fragment kinetic energies and a Jecrease in fission half-lives. Except for the fission half-lives
these quantities vary fairly slowly with neutron number, However, at **Fm there are sudden
changes in all of these quantities. The first observation of the nnkst of syinmetrie fission in
the region at the end of the periodic system was a study 3) of %’Fm fission. For *Fm the
changes in the behavior of many fission properties are even more dramatic. Fission becomes
symmetric with a very narrow mass distribution, the kinetic energy of the fragments is about
35 MeV higher than in the asymmetric fission of 2*%Fm and the fission half-life is 0.38 ma
for "F'm compared to 2.86 h for Fm, We take information about the experimental fistion
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half-lives from®-10), The first observation of the onset of symmetric fission in the region
at the end of the periodic system was the study of 2’Fm fission by®). Subsequently, more
observations of symmetric fission have been made in this region, for instance by '*2). Later,
more extensive measurements on 25*Fm and other elements in this region by '3) have shown
that there often are two components in the kinetic-energy distribution. For 238Fm most of
the events are distributed around 235 MeV but a few are distributed around 200 MeV. This
distribution of fission events has been characterized as “bimod: 1" fission. It has been suggested
that i bimodal fission there are two distinct symmetric fission valleys separated by a ridge !3)
and that one valley leads to elongated scission shapes similar to the scission configuration
for lighter actinides, with a low kinetic energy, and another valley leads to the very compact
scission configuration of two touching spheres. We refer to!?) for an extensive discussion of the
experimental results but reproduce here as our fig. 1 the mass and kinetic-energy distributions
obtained for these elements'3).

1.2.2 Previous theoretical results for the 4 Fm region

One previous study of the effect of fragment shells in the 22Fm region by use of a macroscopic-
microscopic model is presented in the series of papers'*~!7). However, in all of these studies,
the models used have several deficiencies when applied to the present problem. For the mi-
croscopic model the two-center oscillator model is used. This potential is spuriously high in
the neck region of the nucleus 18:1®), which leads to fragment shell effecta that manifest them-
selves too early during the fission process. In addition, the parameterization used is incapable
of generating shapes that are crucial for the study of compact scission shapes and the ac-
companying high fragment kinetic energies. For instance, it cannot gencrate the important
configuration of two touching spheres. For the macroscop‘c model the liquid-drop model with
a modified set of constants '®) is used. This model severely overestimates the energies for
nuclei with pronounced necks. For a configuration of two touching spherical !32Sn nuclei the
resulting liquid-drop energy is 35 M2V higher !?) than the energy given by the more realistic
Yukawa-plus-exponential finite-range macroscopic model. Thus, we feel that many features of
the symmetric high-kinetic-energy processes cannot be studied within the framework of :his
model,

The results of calculations by 2%:2!) ghow some similaritics but also large differences com-
parcd to the results we obtain bclow. One reason for the differences 1s that no independent
control is exercised over the shape of the ends of the nucleus in their shape parameterization.
The ends of the nuclcus are not kept spherical, and therefore it is not possible to see the full
effect of the fragment shells.

Some studics with the Nilsson modificd-oscillator potential have also been performed for
elements in this region. The focun of those calculations was mainly on fission barriers and
fission half-lives22-28), In general, fission half lives were quite well reproduced for clements
throughout the actinide region. Even the complicated behaviour of the fission half-lives for the
clements beyond einitelnium was quite well reproduced by the calculations. The sudden drop
in fissici half-life at 2**Fm was interpreted as d.:e to the disappearance of the serond saddle
in the fission bairicr below the energy of the nuclear ground state, as has also been suggested
by %), However, in the Nilsson model the pertuched-spleroia (¢) parameterization does not
permit the generation of nuclear shapes that wre even close to two touching spheres. Since
such shapes are expected to be of importance for at least some elements in this region one may
ask why the model was so successful in this study, limited to fission barriers and half lives,
The investigation below will ghow that the short half life of 2**Fm is due to the low inertia
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in a new fission valley and not to the disappearance of the second peak in the fission barrier.
We are therefore forced to conclude that the fairly good reproduction in some Nilsson-model
calculations 25:27) of the rapidly decreasing half-lives that occur for for some heavy elements
beyond N = 152 was somewhat fortuitous.

We would also like to mention the static fission model of3'). In this model one assumes
statistical equilibrium among the collective coordinates at the scission point. The energy is
calculated for two nuclei with a fixed distance d between the ends of the nuclei. The niodel
for the energy of the system consists of a macroscopic-microscopic model for each individual
nucleus plus a macroscopic term giving the interaction energy between the two nuclei. The
deformations that are studied correspond to : .heroidal shapes for the two fragments. We feel
that it is hard to justify many of the assumptions of this model. In addition, the model does
not take into accourt important properties of the fissioning nucleus that influence the fiesion
process, such as the fission-barrier structure.

The model we study below, a macroscopic-microscopic model with a Yukawa-plus-exponent-
ial macroscopic model and a folded- Yukawa single-particle potential, has aleo been used earlier
for some studies in this region. We only mention here as one example an earlier, unpublished
result, that a fission half-life of 2.7 y was obtained for *Fm when the model was used in a
standard way. These carlier results will be discussed below together with the results from the
present calculation.

Recently, studies 3*%) that were based on the Woods-Saxon single-particle model and a
finite-range model for the macroscopic energy and that were designed to look for both the new
and old fission valleys have been undertaken. These calculations were partly motivated by our
our rarlier results 343) and the results obtained are very similar to ours. We give additional
comments on these results when we present our calculations. One of the calculations3?) gives
results only for the nucleus 258Fm and takes mass-asymmetric shape distortions into account
both In the old and new valley. In our earlier study 3*) mass-asymmetric shape degrees of
freedom were taken into account only in the old valley. Hlowever, here we undertake a more
general investigation and also study, in a full three-dimensional grid, mass-asymmetric shape
degrees of freedom in the new valley and along the path lcading from the new path back to
the old path.

Our primary goal in this investigation is to search for two fission valleys, one leading to
elongated scission shapes, the other leading to compact scission shapes. The existence of two
different valleys of this type was proposed by Hulet ¢t al.’¥). Their proposal was based on
the observance of a high- and a low-energy component in the fission kinetic-energy spectrum
of some nuclei close to 2Fm. A sccond goal iz to study the implications of the presence of
two valleys on quantitics other than the kinetic energies, particularly on fission half-lives. To
scarch for the new valley, we have to sclect a set of shapea for which to calculate the potential
energy.

2 Nuclear shapes

Two shape parameterizations are at present implemented in the folded-Yukawa single-particle
model. One ia the three-quadratic-surface parameterization ) and the ather is the « ) param-
eterization. The latter in usually the more snitable one for investigating ground state shapes.
In the calculation of potential-energy surfaces it is of considerable importance to select shapes
that are related to the processes that are studied. We use the three-quadratic-surface pa-
rameterization in the caleulation of potential-energy surfaces that we perform to search for
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the two fission valleys, since it is the more suitable one for generating shapes beyond ground-
state shapes that are of interest in fission, in particular for generating shapes close to scission
configurations. However, we have also performed calculations of potential-energy surfaces as
functions of €3,¢4 and mass-asymmetric €3, €5 shape coordinates. It turns out that along the
old path the lowest saddle-point energies are obtained in that parameterization partly for the
reason that more shape degrees of freedom are investigated. Therefore, we use those results
below in the calculation of fission half-lives along the old path. For the ground-state energy we
use the lowest result obtained in the two parameterizations, after first having minimized the
ground-state enerzy obtained in the e3~¢4 parameterization with respect to ¢g, for the fixed
values of €2 and ¢4 that correspond to the nuclear ground state.

2.1 THREE-QUADRATIC-SURFACE PARAMETERIZATION

Since we wish to discuss fairly extensively the choices of nuclear shapes on which we base
the calculation of potential-energy surfaces we give some details of the three-quadratic-surface
parameterization. In it the shape of the nuclear surface is specified in terms of three smoothly
joined portions of quadratic surfaces of revolution. They are completely specified 3) by

(

2 _a? 2
a) —cl—,(z—’l) y h-a<z<n

2
Pt = n=-§§u—hr , n<2<h+e (1

2

L ﬂ:lz"::al,(z“’:i)2 » nz28n
Here the left-hand surface is denoted by the subscript 1, the right-hand one by 2 and ihe
middle one by 3. At the left and right intersections of the middle surface with the end surfaces
the value of z is 2; and z, respectively.

There are nine numbers required to specify the expressions in eq. (1) but the conditions of
constancy of the volume and continuous first derivatives at z; and z2 eliminate three numbers.
The introd uction of an auxiliary unit of distance u through

u=[§@ﬂ+a;ﬂ* (2)

permits a natural definition of two sets of shape coordinates. We define three symmetric
coordit-ates @; and three mass-asymmetric coordinates a; by

o = (I - L))
u
2
a3
0 = :_1—2
_ 1fa?  a;?
14t

m =
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(a)? — a3?)

a3 = ul
and
2 2
a3 = % - :—:i (3)

The coordinate o, is not varied freely but is determined by the requirement that the center of
mass be at the origin.

2.2 SYMMETRIC MOMENTS

It is not ~rery useful tn display calculated results as functions of the shape coordinates defined
in eq. (3) because their values are related in a very nonlinear way to the actual shapes. For
inatance, when z; and z; — 0 for symmetric shapea, that is, when the middle body disap-
pears, then 02 — —o00. We therefore display the calculated results as functions of moments
of the shape. This has the additional advantage that results from calculations using different
shape parameterizations can be displayed as functions of the same quantities. The two most
important symmetric moments of the matter distribution are defined by 33)

2 o PN / /_20,,(.)4:,

r

and

o

2 [.[go(z - %r)'p(r)d’r /-/120 p(r)d"r]g (4)

The following physical interpretation can be given to the definitions in eq. (4). The first
moment r is the distance between the centers of mass of the two halves of the system, which
is symmetric with respect to the z = 0 plane. The sccond moment ¢ is the sum of the root-
mean-square extensions along the symmetry axis of the mass of each half of the system about
its center of mass. Below we display calculated total potential energies as functions of r and
o. Both in the figures and In the paper we use units in which the equivalent sharp radius Ro
of the spherical nucleus is 1. One should note that although the coordinate o, which is the
distance between the centers of the two end bodins in units of u as defined in eqs. (2) and (3),
seems similar to the coordinate r, there are large differences and the r coordinate is definitely
to be preferred for displaying results of the calculations. We would also like to point out that
the moments r and ¢ do not in general define the shape uniquely, but are functions of the
shape. To define the shape precisely, one must define the underlying shape parameterization
and either rpecify the values of the shape parameters or introduce higher moments so that the
number of moments equals the number of shape parameters.

2.3 CHOICE OF NUCLEAR SHAPES

The three-quadratic-surface parameterization allows the variation of threc symmetric and two
asymmetric shape coordinates, arcording to eq. (3). Since we are primarily interested in nuclei
for which fission is symmetric, we shall here not vary the asymmetric shape coordinates but
limit our study tosymmetric shapes. This lcaves us with the three symmetric shape coordinates
01,02 and 03™). As scen in eq. (3), a3 is related to the eccentricities of the end bodjes. One
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realizes that only a small deviation from sphericity of the end fragments removes the influence
on the shell effect by magic or near magic numbers. Consideration of shape changes for a single
nucleus illustrates the extreme sensitivity of the shell correction to small shape changes. We
note for instance that for 2Pb the shell correction for the s}...crical shape is —12.35 MeV 4),
but already for the deformation e = 0.20 the shell correction is about 0.

In fig. 2 we illustrate how the shell correction evolves for two merging 1325n nuclei and
also the effect of deviations from sphericity of the end fragments. The overal; eli.~gation of the
nucleus where we tested the effect of spherical versus deformed end bodies is best characterized
by the value of the first moment, which is r 25 1.3. In terms of r the second saddle ls located in
the region 1.3 < r < 1.42%). We see that for 24Fm the shell correctior changes from —11.80
MeV to0 0.35 MeV when the deformation oi the end fragments changes from spherical to slightly
deformed. The value o3 = 0.60 corresponds to approximately ¢; = 0.25. Two points are clear.
First, the fragment shells have a large effect already at the second saddle, at least for 24Fm.
Second, we note that to see the full effect of the magic fragment shells the end parts of the
nuclear shape have to be kept spherical. We therefore calculate the nuclezr potential energies
for shapes with the end bodies kept at fixed spherical shapes, while we vary o, (separation)
and g; (neck size).

We have actually also varied the third and last symmetric shape coordinate o3, but we
will here, except for one or two bricf references, discuss only results obtained with o3 = 1,
that is, with spherical end bodies. There are several reasons for this limitation. First, let us
observe that many shapes that are generated by varying o3 are also approximately generated
by varying 0, and oz with o3 fixed at 1. This is best understood by considering the pure
spheroid. In our case, with the ends constrained to be spherical, it can be generated anyway,
by letting the middle body grow so that the entire nuclear surface consists of just the middle
body. If o3 were allowed to vary, a spheroid of « certain eccentricity could be gencrated in
an infinite number of ways, for instance by letting the middle body shrink so that the nuclear
shape consists of just the two end bodies of the desired eccentricity, meeting at the middle. In
a .milar manner, many shapes that have o3 # 1 can be approximated by o3 = 1 and suitable
values of the other two coordinates.

Th= above arguments also show a difficulty in interpreting the results of varying all three
symmetric shape coordinates. Major problems will be caused by the fact that several points in
the three-dimensional space will correspond sometimes exactly and sometimes approximately
to the same shape. Thus, a spheroidal ground state corresponds in a three-dimensional de-
formation space to a tube or line running from one boundary surface of the calculation to
another. To avoid this difficulty one can extend the definitions in eq. (4) to include one higher
moment. Then one selects three-quadratic surface shapes that correspond to appruximately
equidistant points in moment space. However, this seemingly elegant procedure has several
practical difficulties. One is that not all grid points in moment space correspond to shapes
that can be generated within the three-quadratic-surface parameterization.

In some investigations that display results of multi-dimensional calculations as contour
maps of only two variables the encergy has been minimized with respect to the additional shape
variables '®). Care must be taken in such procedures, since there may be several minima in the
direction of the additional variables, in which case a minimization procedure is not sufficient
to display all the features of the calculation.

Summarizing the above discuasion, we have deduced that the main features in the potential
encrgy of symmetric fission can be studied by keeping o3 fixed at 1 and varying a; and o;.
In our most extensive earlic. study of fission potential-cnergy surfaces, 01, o3 and a mass-
asymmetry coordinate were varied and ay dep:nded on these three variables in a way that
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was taken from liquid-drop-model calculations '®:28). Thus the important class of shapes with
spherical ends was never studied. The precise shapes we study here consist of a grid in o, and
o3. Because o3 approaches —oo in some cases, we introduce

_ 1 [-4]
.\_1-21__ (5)
o3

This definition holds only for 3 = 1. In our calculation we consider the evalution of a
single system from the nuclear ground state to scission configurations, but not post-scission
configurations. There is a lower bound on ), which for 0; < 2 corresponds to the limit in
which the middle body has disappeared, and for ¢; > 2 corresponds to the scission line. Thus
for each value of o, there is 2 minimum value of A, given by

1_?! 0152
1——, 0])2
ay

Two touching spheres correspond to oy = 2 and A = 0. The grid we choose is densely spaced
for o; < 2. Here we consider o, = 0.38(0.20)1.98. For larger values of o; we select a less dense
spacing and the corresponding o, values are oy = 2.48(0.50)7.98. For A we choose ten values
that are equidistant in the interval (A, + 0.01) to 1.9, where A, depends on o; and is given
by eq. (6).

THe above discussion defines the shapes precisely. Our results are displayed as functions
of the two moments r and ¢ given by eq. (4). We show some examples of the actual shapes
considered in fig. 3a. The shapes are plotted at locations corresponding to the moment values.
We note that, although in general the moments r and ¢ do not define the shapes vniquely,
they do in our study here, since the the shapes depend on only two variables of the underlying
three-quadratic-surface shape paramecterization.

In the pievious study 3!) mass-asymmetric shapes were studied only along the old fission
path. Here 've also study a full three-dimensional grid that includes mass-asymmetric shape
degrees of freedom in the new fission valley. We keep the en.s of the fragments spherical, which
means that o3 = 1 and a3 = 0. Since a,; is determined by the requirement that the center of
mass be at the origin, this leaves three parameters, namely o,, 03 and a3, that can vary freely.
These shape parameters correspond roughly to elongation, neck and mass-asymmetry degrees
of freedom, respectively. For a; = 0, that is rymmetric shapes, we select a grid in o, and o,
such that we in moment space obtain a regularly spaced grid in the moments r and . We
make the choice such that we obtain the grid r = 1.3(0.1)1.7 and ¢ = 0.725(0.025)0.825. We
then keep o) and o3 fixed at the values corresponding to these gridpoints and calculate the
energy for az = 0.00. 0.05, 0.10, 0.20, 0.30 and 0.40.

In principle, it would be desirable to define the moments r and ¢ for asymmetric shapes and
use this definition to determine new values of o, and &3 for each value of a3 such that r and
o remain constant as the azymmetry coordinale a; varies. Thia second, more desirable choice
is technically the more difficult one to carry through, since some values of a; correspond to
physically unallowed shapes. This means that the three-dimensional grid would have irregular
borders. It is important to realize that the : ppearance of valleys and ridges in the calculations
is not invariant with respect to these two choices of three-dimensional grids. However, we are
mainly interested in the height of saddle points and this quantity is not affected by. how the
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grid is chosen. Below we in some c.ases present the full three-dimensional result but we usually
reduce the results to a two-dimensional contour plct in the r—o plane by minimizing the energy
with respect to a,;. It is important to realize that in this two-dimensional contour map even
the structure ard the energy values of the saddles and minima are not invariant with respect
to how the minimization is done. It is only meaningful to =arry out a minimization if the

fanction has a single minimum as a function of the coordinate that is minimized out. This is
" the case for the results we present below.

2.4 ¢ PARAMETERIZATION

The ¢ parameterization was introduced in 1955 by Nilsson), and was later extended to
higher multipoles, fcr example9—*3) to ¢, €3, €5 and 7. To study the fission barrier for
shapes leading to the old valley we calculate two sets of potential-energy surfaces in the ¢
parameterization. First, we calculate potential-energy surfaces for symmetric shapes with e
and ¢4 as independent variables. The potential-energy surfaces were calculated for a grid of
25 points in the ¢; direction and 7 points in the ¢4 direction. For €3 the grid starts at —0.40
and ends at 1.00. The distance between gridpoints is 0.10 for negative ¢; and 0.05 for positive
€3. For the other independent variable we make a transformation from ¢, to €, where € is

defined by
€ , €<0.25
€@= - (M
c.-"—sﬁ . €2 025

This transformation has been chosen such that ¢ = 0 corresponds approximately to the bottom
of the fission valley. The ¢, gridpoints are —0.12(0.04)0.12. The ¢s coordinate is not varied
independently, but has been determined by minimizing the macroscopic energy for °Pu for
each gridpoint value of ¢3 and «,.

To study the effect of asymmetric shape distortions along the old fission path, we have
made the following choice of shape coordinates. As the symmetric coordinate we vary €3 with
€4 fixed such that ¢, = 0. As the asymmetric coordinate we chose €3. The €5 parameter de-
pends on ¢; and €3?4). Again we have delermined ¢g by minimizing the macroscopic eneigy
for 2°Pu with respect to ¢q for fixed values of the other shape parameters. The value of ¢g
depends only weakly on the asymmetric shape coordinates. The surfaces are calculated for the
grid ez = 0.55(0.05)1.00 and ¢3 = 0.00(0.04)0.28.

3 Macroscopic-microscopic model

Our modcl is of the macroscopic-microscopic type and has been discussed extensively in sev-
eral earlier papers 444=46) We usc the model with the parameter set that was determined in a
study *3) that calculated ground-state masscs for 4023 nuclei and fission barriers for 28 nuclei
throughout the periodic system. The root-mean-square deviation betweer. experimental and
calculated ground-state masses was 0.835 MeV for a set of 1323 masses and 1.331 MeV for
the 28 fission barricrs. Many other properties such as ground-state deformations are also well
described by the model 8). The model represents a unified approach to the nl.udyl_.ol' many
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features of nuclear structure, fission and heavy-ion reactions. We here discuss some improve-
mente to the model relative to the earlier study 3) but refer to the previous studies *44-46) for
a more complete presentation.

In the macroscopic-microscopic model the nuclear energy, which is calculated as a function
of shape, proton number Z and neutron number N, is the sum of a macroscopic term and a
microscopic term. Thus the total nuclear potential energy can be written as

E(2,N,shape) = Emac(Z, N,shape) + Emia(Z, N,shape) (8)

There exist several different models for both the macroscopic and microscopic terms. We use a
Yukawa-plus-exponential model for the macroscopic term and a folded-Yukawa single-particle
potential as a starting point for calculating the microscopic term. They arr briefly discussed
below.

3.1 MACROSCOPIC MODEL

We earlier*”) introduced a shape dependence for the Wigner and A° terms for the first time.
Here we discuss this shape dependence in somewhat more detail. The complete expression for
the Yukawa-plus-exponential macroscopic energy has also been given earlier ), Relative to
the expression in the previous study3¢) the shape-dependent Wigner and A° terms give rise
to the following changes in the expression for the macroscopic energy:

Emac{Z, N,shape) =
+ coA®B,

1/A , Z and N odd and equal )
t W (IIIBE + { 0, otherwise

(9

The quantities Bg and By represent the shape-dependences of the Wigner and A? terms.
Paradoxically, although no shape dependences for the Wigner and A° terms were includrd in
a previous study, very good agreement between calculated results and experimental data was
obtained3). However, it was pointed out that shape dependences should be included for a
consistent treatment of the transition from one to two systems. It was also suggested that
the resolution of this paradox might be a missing term from the mass formula, with a sign
such that the effects of the neglect of the missing shape dependences of the Wigner and A®
terms were approximately cancelled. Since any obvious missing tcrm was not known and since
the the model seemed to agree well with data, the standard shape-independent forms of the
Wigner and A° terms were used in the earlier calculations ).

As we discuss below we have now found not another missing term but another missing
effect related to the range in the Strutinsky smoothing function. This effect does indeed
approximately cancel the shape-dependent parts of the Wigner and A® terms in the region
close to 258Fm.

The Wigner term, proportional to |I|, was first discussed by Wigner to account for a V-
shaped trough or kink in the nuclear mass surface. It has been shown 4®) that a term of this
unusual structure can arise from the increased overlap of particles in identical orbits. We refer
to the book by Myers 4®) and original work referred to there for a more complete discussion of
the Wigner term. o
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To derive an approximate shape dependence for the Wigner term we note that in 2n ex-
tensive discussion of the Wigner term ®), it was pointed out that if a system is broken up into
n identical pieces, then the Wigner term must be evaluated separately for each piece, with
the result that it simply jumps to n tines its original value. For symmetric fission into two
identical fragments this simple argument would imply a shape dependence corresponding to a
step function at scission. In reality one would expect that the step function is washed out over
some range of shapes in the scission region. Obviously, if the area of a cross section in the neck
region is very small then there is hardly any communication between the two fragments and
we have essentially the two-system configuration. For cylinder-like shapes and beyond, that
is for shapes with g2 > 0, we clearly have a one-system configuration. How close we are to
one or the other situation is related to the amount of communication through the neck. If the
area of a cross section through the neck is S5 and the area of the maximum cross section of
the smaller one of the end bodies, that is a cross section through the center of the end surface
of revolution, is S;, then we may relatr the amount of communication to the dimensionless
quantity S3/S5;. As a simple ansatz we propose the shape dependence

_ﬁ)' <
By = (1 5 )+l . @so (10

1 Y a,?_O

Suppose ag = 1.0. Then, with the above shape dependence we would find that for scission
shapes we have a Wigner term that is precisely two times the Wigner term for a single sys-
tem. For cylinder-like configurations and for rhapes with thicker neck regions we would have a
Wigner term that is equal to the term for a single shape. Thus. with the above shape depen-
dence we obtain the desired values in the two limiting cases. However, at scission there is still
some communication between the two fragments. This can be illustrated by considering the
shell correction calculated by use of the Strutinsky method, for which we for symmetric con-
figurations have a well-defined prescription. regardless of shape. For two touching '32Sn nuclei
we obtain a shell correction that is about 10% lower than for two well-separated nuclei. This
leads us to chose a value of a4 = 0.9 for the damping coefficient. We have actually calculated
potential-energy surfaces and investigated their structure for other choices of the parameter
a4, which also occurs in the shape dependence of the A? term discussed below. From such
studies it turns out that the above value gives results fo1 fission half-lives and the height of the
ridge between the new «nd old fission valleys that are in good agreer ent with data and with
conclusions that can be drawn from experiment. The uncertaints ir the estimate of ay from
these studies is about 0.1.

The origin of the A? term may be traced to many different sources, that s, it is the sum of
many different effects. For instance, in eq. (9) we could have chosen the zero reference point
for the pairing enecrgy to be the even-even nucleus. Such a change of reference point would
have decreased the value of ¢c by 1 or 2 MeV from its current value. As another example, we
note that in the derivation of the Wigner term an A° term occurs **). It is not retained, since
in the droplet model **) only terms through A!'/? are retained. Clearly there ate many other
such contributions to the A? term, cach with a diffrrent shape dependence. At this point it
therefore seems an almost impossible task to, derive, from fundamental arguments an e::act
shape dependence for the A° term. We therefore make the simple choice

Bo = Bp (11)

that is, we choose the same shape dependence for the A" term as for the Wigner terny.
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From the above discussion it is clear that there is a large contribution to the potential
in the scission region from the shape-dependent Wigner and A° terms. Below we will show
that for ?58Fm this contribution is 6 MeV at the saddle point between the old and new fission
valleys compared to the case where shape-independent expressions for the Wigner and A°
terms are used. Thus, the exact appearance of the potential in the scission region is obviously
influenced by the accuracy of our model for the shape dependence of the Wigner and A° terms.
In addition, it is influenced by the accuracy of the model for the Wigner term itself and by the
fact that slight reformulations of the model and corresponding readjustments of its coefficients
to ground-state masses give different values for the coefficients of the Wigner and A° terms.
Although it may seem from the arguments above that the coefficient a4 could be derived solely
from comparing with the damping at scission of the shell correction of two touching tin nuclei
compared to the shell effect in infinitely separated tin nuclei it should probably be considered,
at this stage, to be an adjustable parameter. By adjusting it appropriately we compensate
somewhat for whatever is lacking in our understanding uf the Wigner and A® terms and their
shape dependences. It would obviously be very valuable for our understanding of the model
in the scission regior. to compare to Hartree-Fock calculations for shapes leading into the new
fission valley, since the potentials used in Hartree-Fock models do not explicitly contain a
Wigner term of the type used in models of the macroscopic-microscopic type.

The values of the constants in the macroscopic model as used here are given in our earlier
study 3), except for a4 for which according to our discussion above we choose the value

ag = 0.9 scission damping constant

3.2 MICROSCOPIC MODEL

The microscop.:-energy t~r:n arises because of the non-uniform distribution of single-particle
levels in the nucleus. It is the sum of a shell correction term and a pairing term:

Emia(Z, N,shape) = Egai(Z, N,shape) + Epur(Z, N,shape) (12)

Both terms are evaluated from a set of calculated single-particle levels, thr shell correction by
use of Strutinsky's method and the pairing correction by use of the BCS i.pproximation. Our
treatment here differs from carlier studies in the choice of smoothing range in the Strutinsky
shell-correction method. We have also extended the model to include the possibility of calcu-
lating odd-particle specialization energies.

3.2.1 Spin-orbit force

To illustrate that onur model is not excessively parameterized, we discuss briefly the spin-orbit
term in our madel. The spin-orbit potential is given by the expression

. h \V’e -Vl xp
Vo = M) =70 (13)

where A is the spin-orbit interaction strength, m is the mass of either a arutron or a proton,

o is the Pauli spin matrix and p is the nucleon momentum,
I r "
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The spin-orbit strength has been determined from adjustments to experimental levels in the
rare-earth and actinide regions. It }as been shown ‘) that many nuclear properties throughout
the periodic system are well reproduced with )\ given by a function linear in A through the
values determined in these two regions. This gives

Ap = 28.0 4+ 6.0 (2‘:—0) (14)
™ =13 45 (24) 05

3.2.2 Shell correction

We calculate the shell correction by use of the Strutinsky method 7). Its precise implemen-
tation in our model is discussed in ref.*4). Some diffizulties associated with applying the
Strutinsky method for a sequence of shapes leading from a single nuclear system to two sep-
arate nuclei have been discussed earlier344°). In the carlier studi-s 3*) we fel, that the most
serious difficulties associated with applying the Strutinsky method in the scisc.on region would
occur for asymmetric configurations. Thus, in our earlier study of the new valley ), which
was limited to symmetric shapes, we applied the method exactly as specified in ref. 4).

However, as we discussed earlier ®), the smoothing range v In the Strutinsky method de-
pends on the size of the system since its magnitude is related to Auwyg, where huwp = 41 MeV/A/3,
It is well-known that for the Strutinsky method to be meaningful, the shell correction has to
be practically independent of the smoothing raage 4 over a range of values in the vicinity of
hwo, the distance between two major oscillator shells. Another way of expressing this is that
the shell correction has a plateau over a certain range of 4 values. One therefore ha-. a certain
freedom of choice in selecting a 4 value. This is illustiated by the fact that in our work we
have consistently used the choice v = 1.0 X hwy made in 19724%), whereas another group has
consistently used the choice®) v = 1.2 x fwy. An inspection of fig. 20 in ref. 44) shows that
in our model the choice 9 = 1.2 x hwy would also have been appropriate, or in fact any choice
in the range 1.0 X Aup to ahout 1.6 x hwg, since the shell correction exhibits a plateau in this
range of energy values for Lhe sixth-order rorrection that we use. The figure which shows the
spherical neutron shell correction for ¥ Pb also shows that for values of ¥ lesa than 1.0 x hwy
the shell correction rises rapidly.

Now consider the shell correction for '3%Sn. We have confirmed that when the spherical
shell correction for 32§ n is calculated we obtain a plateau similar to the one present for #8ph,
extending from about 1.0 x Awy to about 1.6 x huyy, with hwg = 41 MeV/1321/3%, As the next
step Iot us consider what happens when we use our folded- Yukawa code in a standard way to
calculate the potential-energy surface for *Fin for shapes shown in fig. 3a, that is for a choice
of shapen that shows fisrion both into the old and into the new valleya. For the Strutinsky
shell correction the code would choose a smoothing range based on the size of Fm that
iny = 41 MaV/264'” = 6.39 MeV. This value would then be used for the ealculation of
all deformation points on the potential-energy sutface. However, in the vicinity of the pew
valley we are not dealing with one ™ Fm nucleus but with two '*Sn nutlei. Here, with the
same prescription for the samoothing range as above but with the huy for 'S inserted in the
expressions we see that we should really use 4 = 41 MeV/132Y/3 = R.05 MeV. However, the
code would still be wsing 7 = 1.0 x hwd™ = 0.79 x Aw}™. ‘Thix means that in the vicinity of
the new valley the code would not use a smoothing range within the platean region.
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In general terms the resolution of this difficulty is to derive a shape dependence for the
smoothing range 7 or search in v for the plateau region at each deformation point. To do
such a search at each deformation point is not completely trivial. Some difficulties are that
for some deformations there is no well-developed plateau and at other deformations there
are two plateaus. It would be very difficult to derive a shape dependence that would correctly
describe the size of the system or systems corresponding to the shape configuration considered.
Fortunately, there is a simpler solution to the calculation of the shell corrections as the system
changes from a single system to two separate nuclei. We simply observe that 1.0 x Aw}3? =
1.26 x Aw?®. Therefore, when we calculate the potential-energy surface for ?*4Fm, instead
of choosing v = 1.0 x Awd®, if instead we choose v = 1.26 X AwJ®* we are in the plateau
region bo’" in the ground-state region of the potential-energy surface for *Fm and in the
region corresponding to two touching '3Sn nuclei. This means that calculations that have
used the prescription 4 = 1.20 x Awp for their smoothing range can be expected to obtain more
nearly correct results over the entire range of shapes considered in potential-energy surface
calculations. However, it is possible that this value is slightly too small to be in the plateau
region. Also, the choice v = 1.26 X hwg may be too close for comfort, in particular if asymmetric
shapes are considered. For this reason we choose for the smoothing range in the shell correction
calculation

7 = 1.4 x huwy (16)

3.2.3 Odd-particle specialization enerygies
In the BCS theory there is an additional quasi-particle energy

Fap = (e, - 27 + 87" (17)

associated with an odd particle in orbital v over and above the energy interpolated between
neighboring even nuclei. Here A and A represent the Fermi energy and pairing gap, respectively,
obtained in the BCS calculation. In previoua calculations with the folded-Yukawa model
the odd particl. as always been placed in the lowest available orbit. We have previously
described more  eciscly how the energy of such an odd system is calcvlated in the folded-
Yukawa model ***). The method used, which for odd systems includes the quasi-particle
encrgy associated with the ground-state orbital, is appropriate for the calculation of ground-
state masses, but not for the calculation of odd-particle fission batriers.

It has been noted for a long time that there is a relative hindrance associated with the fission
of odd- A systemn. This hindrance was first explained in 1955**1) in termn of a specialization
energy arising from the connervation of spin and parity of the odd particle during fission.
This can give a nubstantial contribution to the barrier over and ahove & barrier obtained by
Interpolation hetween neighboring even nuclei, since far from the ground atate the orhital with
the required spin and parity that is clesest to the Fermi surface may have a quasi-particle
encrgy of aeveral MeV, In general, one oxpects higher apecialization energios to be associated
with higher ground-state spins,

In our ealculations here, we have necounted for the specialization energy by always choosing
the orbital of given spin  and parity that lies elosest to the Fermi surface. For the case whore
there In both an add proton and an odd neutron we have assumed that the specialization
energien are additice and have not included any coupling between the two odd particles, For
the rane of asymmetric shapes only {l In conserved, Thus, in the potential enerpy surfaces

where aaymmetric shapes are studied, 2 and parity are conserved only for the grid points
L}
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corresponding to symmetric shapes, that is on the line e3 = 0, but at other grid points only 2
is ronserved.

It also remains to specify what spin to assign to the odd particle. One possibility is to use
the experimental value for the ground-state spin. Then it would not be possible to predict
fission half-lives for odd systems where the ground-state spin is not known experimentally.
However, in our code we have modified the treatment of odd-particle systems in two respects.
One possibility is to prescribe the spin and parity of the odd particle. This feature is used to
calculate the specialization energy in fission. If no spin is specified, the code will keep track
of the spin of the lowest state of the odd particle. Thus, we were able to run the code for a
set of ground-state shapes determined in a mass calculation 82%3) and obtain predicted spins
for the odd particles at the ground state. In our studies here, we use these predicted spins to
calculate potential-energy surfaces for odd systems.

It is of interest to compare the predictions with experiment. In the actinide region the
agreement is usually very good. For instance, the calculated ground-state odd-neutron spins
agree with experimental data for uranium isotopes ranging from 222U to 23U and for plutonium
isotopes ranging from 23Pu to ?5Pu. However, for neutron numbers above N = 152 there is
some disagreement. In thi» region there are scveral neutron levels very close together in the
calculated level diagrams as can be scen in several figures in ref.37). This makes it difficult
to predict the correct level order. At present we feel the current situation is close to the best
possible with a model of this type. Because the spins are not always predicted correctly the
calculated potential-energy surfaces for odd systems should be interpreted with some care.

4 Calculated results

We now present calculated results for nuclei in the vicinity of 2‘Fm. We have learned that it is
extremely useful to considcr fission half-lives in the interpretation of the calculated potential-
energy surfaces. However, it is instructive to first discuss solely the structure of the potential-
encrgy surfaces. We therefore start with a discussion of potential energies for Fm isotopes and
then proceed to discuss the significance of fission half-lives, making additional comments in
that context ahout the Fm isotopes. Then we present and discuss potential-energy surfaces
for additional clements.

4.1 CALCULATED POTENTIAL-ENERGY SURFACES FOR Fm ISOTOPES

We dirplay the calculated energies in the form of contour diagrama. First we show the smooth
trends of the underlying macroscopic energy. As a representative nucleus we show Fm in
fig. 3b. The spherical shape is not Included in the set of shapes studied, but is located at
r = 0.75 @ = 0.4873 (cf.™)). The saddle point energy is about 2 MeV and s located at
r = 1.07, # = 0.68. A prominent structure in the diagram is a mountain, centered around
the configuration of two touching spheres, at r = 15874, @ — 0.7099. One should, as we have
pointed out above, realize the importance of using a finite-range madel for the macroscopic
energy to got a realistic value for the energy of thia configuration. In the inveatigation by '*),
uning the liquid-drop model, which is not of the finite-range type, the calculated energy obtained
for this shape configuration, for a nucleus with approximately the fissility of 2?Fm, is about
50 MoV ahove the energy of the spherical shape. After passing over the saddle pomt, the
dynamical path of the nucleus depends strongly on disslpation. A dynamical ealenlation shows
that with no dissipation the nuclens follows approximately the valley that can be neey beyond
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the saddle point and reaches the scission line at about r = 3.554). We now show how these
features and conclusions are modified by taking into account the micrcscopic part in the model
for the total potential energy.

In figs. 3c and 3d we show calculated total potential-energy surfaces for ?*?Fm and *4Fm.
The contour map for *2Fm in fig. 3c is quite different from .he one for the macroacopic energy
displayed in fig. 3b. In fig. 3c we can see the deformed ground-state at r = 0.87, ¢ = 0.57,
a first saddle at r = 0.99, ¢ = 0.63 and a second minimum at r = 1.15, ¢ = 0.68. The
area beyond the second minimum shows interesting structure. There are two mountains, one
centered at the two-touching-sphere configaration, the other at r = 1.33, ¢ = 0.77. The latter
mountain is surrounded by two aaddle points that are of equal height to within 0.5 MeV. The
energy of the peak of the mountain separating these two saddle points is about 2 MeV higher
than the saddle-point energies. A nucleus passing over either of the two saddles would seem
to evolve into shapes leading into a valley that is similar to the one that is present in the
macroscopic case in fig. 3b, which in this case reaches the scission line at between r = 3.75 and
r = 4.25. Access to the scission configuration of two touching spheres is blocked by the other
mountain, which is about 3 MeV higher than the saddle points.

In the study by 2°) limited tn the two nuclei ***Fm and 2*?Md part of this structure is se_a,
namely the mountain at r = 1.33, 0 = 0.77 with the two surrounding saddle points. In a later
study by the same group?') a “super-short” valley towards scission is seer. for ?32Cf. This is
contrary to our results below. In ?!) fig. 2 shows that the shapes of the fragments at the end of
this valley are far from spherical, The results of ') may therefore be somewhat spurious and
may occur because of the particular constraints imposed by their shape parameterization on the
shape of the end of the nucleus or because a liquid-drop model with a standard surface-cnergy
term is used instead of a more appropriate finite-range model for the surface energy. In fig.
3a in ?!') some point outside the figure and somewhat below the lower left corner corresponds
to two touching spheres. This important shape is inaccessible to the shape ;yarameterizatior
used. In addition one can see the unphysical rise in cnergy at this location, which is due to
the choice of an inadequate macruscopic model. The contour maps are displayed in terms
of gecometrical parameters of the chape, whercas we display the contour maps as functions of
moments of the shape, which is a more appropriate method. This difference may also lead
to differencen in the appearance of valleys and ridges, since these structures are not invariant
under coordinate transformations.

Alsoin other, earlier studies that featu-ed more limited shape parameterizations and models
for the macroscopic energy that did not allow for the study of shapes in the vicinity of the
two-touching-aphere configuration, very little of the type of structure which we see here has
been present, Examples of such results are fig. 1¢ in?4), which presented a general sirvey
of heavy-clement fission barriers, and fig. 9 of '4), which wan directed specifieally towaras the
atudy of t -+ influence of fragment shells.

Fig. 3u shows a correnponding potential enerzy surface for ™ Fm. There are major differ.
onces in structure between this nucleus and 2?1'm shown in the previous figure, Here there i
no second minimum. Instead, a short but deep valley starts at the first saddle and leads directly
to the two touching sphere configuration. Fhe mountain that is present at this configuration
in the ®?'m ease has completely disappeared here, This short, deep valley is separated by a
high ridge from another valley in the upper part of the diagram,

On the ridge there is a mountain at r - 141, @ -~ 0.8 and above this mountain there s
n alightly lower saddle leading into the upper valloy, The upper valley in similar to the one
found in the plot of the macroscapic energy only, in hg. 3h. The lower valley has clearly been
crepted by fragment shell effecta, Using tenminology from '), the lower valley is Bagment
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shell-directed an ’ the upper one is liquid-drop-like. The upper valley is the old valley and the
lower valley is the new valley. In a pure macroscopic model there is for separated, spherical
fragments a valley called the fusion valley. The results of 3®) show that the fusion valley ends
at about r = 2.0. In our discussions here we mean by new valley the valley carved out by
shell corrections beyond the end of the conventional fusion valley. Since it is only very recently
that experimental studiea have probed the manifestations of thia valley, we feel the designation
“new” is appropriate.

The results of 1) for 4Fm also show, in their fig. 10 a deep valley extending to the first
saddle. However, by comparing figs. 9 and 10 of %) it is clear that their results are quite different
from ours. The figures show that the initial part of the new valley in fig. 10 corresponds to the
same shape as the second saddle for 2*?Fm in fig. 9. We find, in contrast, that a key feature of
our results is that the old and new paths correspond to different shapes, as early in the fission
process as the second saddle. Another difference is that our results show that the scission
configuration for 2‘Fm is reached already at —6 MeV in the new valley. This is just 4 MeV
below the ground state. In the results of '*) the energy 4 McV below the ground state in the
new valley for Fm corresponds to a shape with a fairly large neck, d = 0.35.

We have displayed results for ***Fm because it is the nucleus for wkich one would expect
the fragment shell effects to be maximuin and it is of value to see the theoretical results for
this case. However, this nucleus has not been observed experimentally. Were the fission of this
nucleus ever to be observed experimentally, one would expect all fission to follow the lower
valley, since it is separated from the valley higher in the diagram by a high ridge. The cases that
have been experimentally observed !?) often seem to lic in a transition region between fission
in one valley or the other. In particular, for **Fm most of the events have a kinetic encrgy
peaked around 235 MeV, but the skewed kinetic-cnergy distribution indicates the presence of
a second smaller peak at 200 MeV.

It would be desirable to deduce the dynamical evolution of nuclear shapes from the last
saddle from a dynamical model. Since sheil effects are important in the region we study,
such a model should also incorporate shell effects. A survey of a large number of nuclei with
such a model would require an enormous effort. We therefore base some simple arguments
about the dynamical evolution from saddle to scission mostly on the structure of the static
potential-energy surfaces we present here. llownver, we relate the results of our arguments to
experimental data. This will show if our approach is a useful one. The choice of coordinates
in terms of which the potential energy s displayed is snitable for arguments of this type, since
the mass and dissipation tensors for separated fragments are diagonal in v and o ™). 1t should
therefore be close to diagonal also for connected shapes close to scission, the region in which
we Arc most interested.

4.2 POTENTIAL-ENERGY SURFACES FOR EVEN Fm ISOTOPES

A~ a first example we show in fig. 4 the result obtained pre.iously ™) for **Fm in the current

formulation of the model in which the shape dependences of the Wigner and A? terma are
included. Here the structure of the sueface in such that it provides a consistent interpretation
of the experimental results, in particuiar since we show below that the suddle along the long
dashed it awitchback path in lowered by mass asymmetric shap: degroes of freedom.  The
mass-arymmetric shape degrees of freedom will be studied in the shaded region of the countour
dingram. Moat of the fission eventn will follow the short dashed path leading into the new
valley. Just as in the caleulation with the old vergion of the model ™) there is a switehback

path leading from a point along the new path across a saddle at about v 150 and & (RS
4
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back to the old valley. This switchback path according to our interpretation is responsible
for the few low-kinetic-energy events that are observed for this nucleus. The old fission path,
shown as a dot-dashed line, is not involved at all in the fission process according to our current
interpretation. Shapes along the three paths are shown in fig. 5.

In fig. 6 we show the result obtained for 2®Fm with the new range v = 1.4 X Ay in
the Strutinaky method, but without the new shape dependences for the Wigner and A° terms
included. For ?Fm there is now no second barrier in the new valley, which would agree with
the old interpretation for the short half-life for this nucleus. However, the ridge between the
old and new valley is much too high to allow any branching into the old valley as is indicated
by experiment. The fission barrier along a path corresponding the bottom of the new valley in
fig. 6 is very similar to a corresponding barrier obtained by another group 33). That calculation
uses & Woods-Saxon single-particle potential, the Yukawa-plus-exponential macroscopic model
and a choice of shapes that includes shapes close to two touching spheres. As in our fig. 6,
their Wigner and A° terms are shape-independent.

In figs. 7, 8a-8c and 9a-90 we present additional potential-energy surfaces for symmetric
shapes. However, before commenting on these results we discuss the effect of mass-asymmetric
shapes in the new valley. The saddle along the switchback path in fig. 4 is about 3 MeV higher
than the saddle leading to compact scission shapes. ‘To calculate the branching ratio between
fission along the switchback path and fission into compact shapes one needs to consider the
penetrabilities through the barriers in a dynamical calculation. However, mince the saddle
along the switchback path in fig. 4 is 3 MeV higher than the outer saddle in the new valley one
may feel justified to conclude that access to the old valley is almost completely blocked by the
ridge. On the other hand, one may suspect that mass-asymmetric shape degrees of freedom
may lower the saddle along the switchback path.

To investigate this possibility we have calculated the potential energy for a full three-
dimensional grid for a choice of shapes that include the switchbaci saddle and the outer saddle
along the new fission valley. The exact choice of shape coordinates has heen discussed earlier.
Some results for *8Fm are shown in figs. 10a and 10b. Each surface shows the potential
energy for a fixed value of r as a function of ¢ and the mass-asymmetry coordinate a; of the
three-quadratic-surface parameterization. For az = 0.0 the results should be identical to these
plotted in fig. 4. However, there are some minor differences. These have arisen because the
two types of surfaces are based on different sets of grid points and the fact that the potential
energy varica very rapidly in some regions of deformation space. The: two surfaces in figs. 10a
and 10b give results for the two values of r = 1.4, and 1.6. To obtain a more three-dimensional
picture of the results we may pretend that we are standing at about r = 2,0 and & = 0.775
in fig. 4, that we look in the negative r direction and that energy values have been calculated
vertically out of the planc as a function of the third coordinate a;. The surfaces in figs. 10a
and 10b represent a-n; planes rising above the r-¢ planc in fig. 4, as we would see them from
our vantage point. Parts of the new and old fission valleys are seen in figs. 10a and 10b to
the lower left and to the upper right, reapectively. ‘The bottoms of the two valleys are usually
not prescnt in the two figs. 10a and 10b, but the saddle between che two valleys stands out
very clearly in these figures. ‘This saddle correrponds to the ridge between the old and new
fisnion valleys in fig. 4 but with the effect of mass asymmetry on the height of this ridge taken
into account. The lowest point on the sequence of saddle points in cuts of the type shown in
figs. 10a and 10b co responds to the height of the saddle on the switechback path between the
old and new valleys, now with mass asymmetry taken into account,

To make onr three dimenslonal results easier to interpret, we reduce the results in fige. 10a
and 10b to a two dimensional contour plot. This we accomplish by plotting the migimum In
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the a3 direction, minimized for fixed values of ¢y, o2 and o3, as a function of r and o in the
forin of a contour diagram. In fig. 11b we present such a contour diagram for **Fm. The
plot is based on figs. 10a and 10b and similar results at r = 1.3, 1.5, and 1.7 that we have
not shown. A minimization procedure, such as the one we use here is most meaningful and
most simple to interpret if there is only one minimum in the direction of the variable that is
eliminated by minimization, as is the case for the results we present here. Were there several
minima one would obtain several contour-map sheets and the results would be more difficult
to interpret.

Figure 11b shows the influence of mass asymmetry on the small shaded region of fig. 4.
From an inapection of figs. 10a and 10b it is clear that the outer saddle along the new fission
path at about r = 1.6 and o = 0.75 is not lowerec by mass asymmetry. The fact that the
energy of this saddle is at about 0.75 MeV in fig. 11b and at about 1.5 MeV in fig. 4 only
reflects the different sets of grid points used to plot the two figures. Figure 11b is the more
accurate one. In most regions of the contour diagrams the diffcrence between the two figures
is much smaller. In fig. 4 the energy decreases very rapidly at r = 1.6 as a function of o,
starting from the lower border of the contour diagram and proceeding in the direction of the
saddle. This property is somewhat difficult to reproduce by interpolation and is the reason
why a sornewhat inexact value is obtained for the saddle-point energy in fig. 4. In fig. 11b one
grid point is located at r = 1.6 and o = 0.75 and arother at r = 1.6 and ¢ = 0.725. This
results in an excellent accuracy for the saddle-point energy.

A further comparison of figs. 4 and 11b shows that the saddle on the switchback path is
indeed lowered by mass asymmetry. In fig. 11b it is equal in height to the outer saddle in the
new valley. It is also of interest to note that it has moved from r = 1.5 and ¢ = 0.825 in fig. 4
tor = 1.4 and ¢ = 0.75, although we expect that the movement would have been smaller if r
and o had been conscrved when a; was varied.

We mentioned earlier that a study3') with a Woods-Saxon single-particle model and a
Yukawa-plus-exponential macroscopic model had obtained very similar resuiis to ours for
8Fm. However, that calculation did not use shape-dependent Wigner and A° terms. To
be able to make a more relevant comparison between those results and the results obtained
with our model, we show in fig. 11c a contour diagram for 2**Fm obtained exactly as in fig. 11b
but without any shape dependence for the Wigner and A° terms. We see that in this case there
is a fairly high ridge separating the new and old fission valleys. In addition, there is no outer
saddle in the new valley. A comparison of figs. 6 and 11¢ shows that the energy along the new
fission valley is not lowered by mass asymmetric shape degrees of freedom, but that the ridge
separating the new and old fission valleys becomes fomewhal lower when mass-asymumnetric
shape degrees of freedom are considered.

When we compare our results for the case with shape-independent Wigner and A° terms
to the results obtained in the study by the Polish group33) with the Woods-Saxon model it is
clear that the results for symmetric shapes are very similar, in fact almost identical along the
new valley. However, for the case with mass-asymmetric shape degreen of freedon: taken Into
account the Polish group finds that the ridge between the old ind new valleys disappears at
about r = 1.5, This ix in contrast Lo our resulta, for which fig. 11c shows that there remains
a ridge at least out to r = 1.7, which is the last point shown in fig. 1le. The Polish group
concludes from their results that whether the nucleus ends up in the old or new valley I decided
by dynamics after the barrier has been penetrated and not by different penetrabilities through
different barriers. We feel that their calculational resulis do not prove this point, An inspeetion
of the figure of the shapes on which the potential energy surface for 2% Fm in the Polish study
in based shows that as the asymmetry of the ghape increases there ix a strong ilu;ru;uu' in
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the overall elongation of the nucleus, expecially at larger values of r. Since there is a strong
decrease in the Coulomb energy of the system when the elongation of the nucleus increases,
this coupling between elongation and asymmetry in the Polish calculation is the mechanism
behind the disappearance of the ridge between the two valleys. Thus, the ditappearance of
the ridge in their calculations is not caused by the effecy of mass-asymmetric shape degrees of
freedom, but by the coupling between the mass-asymmetry and elongation shape degrees of
freedom in their parameterization.

We also feel that in addition to selecling an orthogonal sct of shape degrees of freedom,
it is necessary to consider the ehape dependences of the Wigner and A° terms, as we have
done in figs. 4 and 11b. The shapes corresponding to the contour map of fig. 11b are shown
in fig. 11a. We mentioned in earlier that for @z # 0, we do not exactly conserve r and o.
In fact, there is some ambiguity in bow to define these concepts for asymmetric shapes. We
have investigated a number of possitle extensions of the definitions of r and & to asy.ninetric
shapes. The point where the ambiguity arises is when we specify how to define the two parts
of the system. We have several possibilities, including dividing the nucleus at a point midway
between the ends or at the minimum neck radius. The eflect of conserving r and o by use of
these and other prescriptions is to increase the height of the ridge between the new and old
valleys in fig. 11c, thus only reinforcing our conclusicn above that there is a ridge between the
new and old valleys. However, in contrast to the case in figs. 3c, 3d, 6 and 11¢, we elsewhere
use a model with shape-dependent Wigner and A” terms, as shown ir fig. 11b, ior example.
In such cases there is often a sadale on the ridge between the old and new fission valleys and
then a prescription for conserving r and o would not change the most important features of
the potential-energy contour map, namely the height of this saddle point, since saddle-point
heights are invariant under coordinate transformations.

From the above discussion we find that the mechanism behind tne bimodal fission process
remains the one proposed in our carlier study 3*): For 2*8Fm §ssion initially proceeds along the
new fission valley, with most events penetrating the outer saddle along this path. However, a
small number of events branch off from the new valley to under the saddle along the switchback
path and penetrate into the old fission valley. Ap jmportant point made in our earlier study 3)
is that because the barriers leading into the new and old valleys are the same from the ground
state to the exit point at the end of the barricr, except for a tiny portion at the end of the barrier,
it is possible for the branching ratio to be about unity, as is also observed experimentally.

To show the structure of the potential-encrgy surface for nuclei at some distance away
from where the transition point between fission into the old valley and fission into the new
valley occurs, we display a potential-energy contour map for symmetric shapes for 32Fm fig. 7.
From fig. 7 for 7Fm it is clear that access to the new valley is blocked by a mountain ridge.
Experimentally it is known that 2323'm fission properties exhibit characteristics associated with
fission in the old valley. The contour map in fig. 7 shows that there are two saddles leading
into the old valley, one saddle on the old fission path at r = 1.4 and ¢ = 0.85 and another
saddle on the switchback path at r = 1.5 and @ = 0.80. Both of these saddles are lowered
by mass-asymmetric ghape degrees of freedom.  The mountain ridge is unaffected by mass
asymmetry at @ values below @ = 0.75. Consideration of fission half-lives below shows that it
in likely that during flsslon this nucleus follows the switchback path. The effect on the potential
energy of the new valley should be maximum for ™ Fm. Our calculations show that there i
a very doep new valley, with a ridge approximately 10 MeV high aeparatirg the new and old
valleys in a potential-energy surface hased on symmetric shapes only,. We will later show a
potential energy contour map for this nucleus with mass akymmetric shape degrees of freedom

taken into account, "
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Mass-asymmetric shape degrees of freedom lower the switchback saddle somewhat. In
figs. 12a-12b we show for 26Fm and 2%°F'm, respectively, the effect of mass-asymmetric shape
degrees of freedom on the structure of the potential-energy surface in the outer region of the
new valley. For 252Fm (not shown) our calculations show that mass asymmetry lowers the
switchback saddle by about 1 MeV and that a high mountain blocks access to compact scission
shapes and pushes the fission path rver the switchback saddle into the old fission valley. For
258Fm fig. 12a shows that the ridge blocking the outer part of the new valley is only about
1 MeV higher than the saddle on the switchback path. However, since the ridge is also very
wide in the direction of compact scission shapes the structure of the surface suggests that
fission almost totally branches into the old fission vzlley. For °Fm, shown in fig. 12b, the
saddle along the switchback path is 2 MeV higher than the outer saddle in the new valley.

Since the widths of the barriers and the inertia associated with fission along the two patha
also influence the branching ratios, one cannot conclude solely from a comparison of barrier
heights whether fission into the old or new valleys will dominate. However, the surfaces in
figs. 12a, 12b and 11b interpreted together with the experimental data available for 2°6Fm and
38Fm indicate that for 229Fm all fission will be in the new valley. We draw this conclusion
by considering the effect of the small change in the structure of the potential-energy surface
between 2**Fm and ?*®Fm in figs. 12a and 11b on the fission properties of these two elements.
For 2*Fm the saddle in the new valley is about 1 MeV higher than the switchback saddle
and for *®Fm it is of the same height as the switchback saddle. This gives a change in fission
properties from fission almost entirely into the old valley to fission almost entirely into the new
valley. Thus, for 2°Fm, where the saddle into the new valley is now 2 Me" lower than the
switchback saddle, we expect no fission into the old valley.

4.3 ADDITIONAL POTENTIAL-ENERGY SURFACES

We have also calculated potential-cnergy surfaces for other heavy clements. We present and
discuss some results of these calculations in this subsection, but postpone part of the discussion
until the section on fission half-lives.

For even nuclei some additional potential-energy surfaces are shown as functions of r and
o in figs. 8a-8c. In fig. 8a the results for #°Pu are exhibited. This nucleus is far removed
from ncutron and proton numbers favoring the new valley. As expected, there is also no
trace of a new valley in the calculated potential-energy surface. Instead, there is a mountain
some 30O MeV high at the location of two touching spheres. For 272110 in fig. 8b there is a
structure corresponding to the new valley in the potential-energy surfaces. The implications
of its presence will be considered in the subsection on fission half-lives below. Somewhat
surprisingly there is also a ccond lower valley present in the polential-energy surface for
190110 displayed in fig. 8c.

In figs. 92 -9h we show patential-energy surfaces for symmetric shapes for two odd systems.
Since the effects of mass-asymmetric shape distortions are not considered in these figures,
the heights of the saddles on the ridge between the new and old valleys are overestimated.
The reductions of the height of the ridge if mass-asymmetric shape degrees of freedom were
taken into account abviously depends both on the particular proton and neutron numbers of
the nucleus, and on the specialization energy associated with the odd particle. For the even
fermium isotopes we have above scen an effect of about 2 MeV on the height of the ridge
and will in our discussion helow connider this to be the reduction, on the average, also in the
odd case. One should, however, always keep in mind that this number is only a very rough

estitnate.
..
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The most notable feature in the potential-energy surfaces for the odd nuclei is the large
effect of the €1 spin value on the specialization energy. This is most clearly seen for a sequence
of Lr isotopes discussed in ref.55). Although the neutron number for 268Ly is N = 163, which
is only one unit away from the most favorable neutron number N = 164 for the new valley,
the barrier in the new valley is much higher for 26Lr than for 23Lr. This is of course due to
the very high specialization energy associated with the N = 163 orbital with ,, = 13/2. In
addition, the calculated spin for the odd Z = 103 proton is Q, = 9/2 for many Lr isotopes.
:: the bottom of the new valley at r = 1.50 the specialization energy is more than 8 MeV for

Lr.

The prediction that the ground-state spin of the N = 163 orbital is )}, = 13/2 is subject to
some uncertainty. An inspection of calculated Nilsson diagrams for the folded- Yukawa model,
for instance figs. 1b and 2b in ref.37), shows that the orbital in question is [71612] comning
from the j1® spherical shell. The position in the region of the deformed ground states of the
Q, = 13/2level is right above the N = 162 deformed gap. This gap has long becn preseat 437)
in calculations with single-particle potentials that go to zero at infinity. However, it is only
more recently after new experimental results were obtained 36~38) for elements in this region
that the consequenses o1 this deformed gap for the stability of the heaviest elements were
realized. The experiments themselves ard recent calculations *2-8!) ghow that the importance
of this gap for the stability of the heaviest elements is considerable. Since the calculations
reproduce some experimental results in this region fairly well, the predicted level spectrum
should be fairly reliable. Of course, the prediction that it is precisely the N = 163 orbital that
has spin Q, = 13/2 is subject to the uncertainties of the theoretical model. However, from an
inspection of the calculated level diagrams it is clear that several high-Q levels should be present
in the vicinity of N = 162 and from thesc rather general arguments we see that for some odd-
N nuclei in this region we should expect very high ground-state spins and, correspondingly,
very long fission half-lives. Another factor that has tu be considered is that in some cases
the very highest Q2 values associated with the top Nilason orbitals emanating from very highly
deg=nerate spherical shells may not occur as g:ound-state orbitals in a deformed nucleus 92),
because of the effect of residual interactions rnot taken into account here.

Figures 13a-13b, and 14a-14b show calculated potential-energy surfaces, minimized with
respect to a mass-asymmetry coordinate, in the vicinity of the outer part of the new valley
and the switchback path from the new to the old valley. Our calculated results presented in
these figures together with other calculated contour maps that are not exhibited, show that
for Cf, No, Rf and Z = 106 the new valley emerges as the more dominant one approximately
at %2Cf, at PINo, at **Rf and at %0106, respectively. When considering the implications
of the valleys and saddle points in the calculated potential-cnergy surfaces it is very useful
to simultaneously consider calculated fission half-lives corresponding to various paths from
ground state to scission in the potential-cnergy surface. The results presented in this section
will therefore be further discussed in the next section on fission half-lives.

In a study®) of 2°I'u fission propertics hased on a density-dependent Hartree-Fock
Bogolyubov approach a potential-cnergy surface with two different valleys is also obtained,
There are some considerable differences between this potential-energy surface and the dynam-
Ical calculations based on it and the results we have obtained in the F'm region. This does not
necessarily constitute a contradiction, because the fission properties in these two regions are
considerably different. In the potential-energy surface calculated in™) the valley correspond.
ing Lo compact shapes starts outside the last saddle point and is very similar to the fusion
valley seen in calculations based on pure macroscapic models, for instance by ). Thus, it
is different from the new valloy we see in our calculations. As we discussed above, by new
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valley ve mean the valley carved out by shell corrections inside the end of the usual fusion
valley as given by macroscopic calculations. However, an interesting feature in the structure of
the potential-energy surface obtained by %®) is the ridge separating the two fission valleys. In
the dynamical study by®3) transitions from the fission valley to the fusion valley occur along
the entire extension of this ridge and provide a mechanism for generating a kinetic-energy
distribution extending from cold fission to the mare probable events with internally excited
fragments. Our results for the Fm region indicate a different mechanism for the cold fission
in that region. In our picture we reach the old and new fission valleys by starting from the
same second minimum and following paLhs that lead under two different second saddle points.
However, our piciure and that of®?) are not necessarily contradictory, since our t-ajectories
correspond to the mean of high and low kinetic-energy distributions, whereas the results of %)
represent a first step in a calculation of an entire kinetic-energy distribution with a single peak.
The two approaches emphasize slightly diflerent aspects of the fission process.

4.4 FISSION HALF-LIVES

It has been proposed that the rapid change in half-life when going from 5Fm to 2*8Fm is
due to the disappearance of the second saddle in the barrier telow the ground-state energy.
Fission through only one barrier, the first, gives very good agreement with the ohserved short
half-life of 238Fm %:27), However, one may ask if and how the fission half-life is connected
to the change in the other fission properties at this transition point, namely to the change
to symmetric fission and to high kinetic energics. We show that the old interpretation that
the barrier of 25®Fm has disappeared below the ground state is inconsistent with results from
the present calculation and propose a new mechanism for the short half-life. In addition, we
show that the connection between quantities like kinetic energies, fission hall-lives and old and
new fission valleys is complex, but that therc is an interpretation that is consistent with the
experimental data observed up to now.

To calculate fission half-lives it is necessary to know the potential energy, the inertia asso-
ciated with the motion through the barrier and the path from the ground state through the
barrier. As we mentioned in the introduction, mainly two models have teen used for studies of
this type. The first type is a microscopic model for the incrtia, and the second type is a semi-
empirical model. Since we base the calculation of the nuclear potential energy on a microscopic
model it would seem desirable and consistent to base also the calculation of the inertia on some
wwPe of microscopic model. Illowever, the microscopic modcls for the inertia seem more uncer-
taln than the macroscopic-microscopic model for the potential energy. Different microscopic
models yield very different results for the inertia, as can be seen from fig. 3 in ), for instance.
Usually the calculated inertia varies in a somewhalt periodic manner with a pcak-to-valley ratio
of about two in some typical cases. One should also note that the peak-to-valley ratio and
the magnitude of the calculated inertia are extremely eonsitive to small changes in the model
assumptions. However, we may observe from fig. 2 in®) that in some recent recent results
from microscopic models, the calculated inertia shows a rapidly fluctu: *‘ng behaviour around
a mean which is approximately equal to the more simple semi-empirica .nodel for the inertia.
We may argue that the effect of the fluctuations averages out, since one evaluates an integral
over the product of the fission-barrier height and the Inertia. It is also clear that when more
effects are taken into account in the determination of the microscopic inertia the fluctuations
become amaller. Because of the uncertainties in and the complexities of the microscopic models
for the Inertla, we here use the semi-empirical approach.

As a first step in the seml-empirical approach we select a one-dimengional path through
‘e
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the multi-dimensional potential-energy surface. This path starts at the nuclear ground state
and includes saddle points and minima in the fission direction and a few points beyond the last
saddle. Obviously, the choice of path between the saddle points and minima is open to some
ambiguity. However, selecting somewhat diflerent paths aflects the calculated half-lives by less
than an order of magnitude. But to remove the small ambiguity, we only use the energies
and values of the position coordinate r at the saddle points and minima in the construction
of the one-dimensional fission barrier. We then construct the fission barrier by connecting the
ground state to the first saddle with a third-degree polynomial whose derivatives are zero at the
ground state and at the saddle. This completely defines the third-degree polynomial. The rest
of the barrier is constructed in a corresponding manner, by connecting neighbouring extremum
points with third-degree polynomials. If there are no extrema beyond the exit point, which is
the point where the barrier energy becomes lower than the ground-state energy, we construct
the last part of the barrier by a straight line from the saddle point through a point somewhat
beyond the exit point at the bottom of the valley that leads towards scission. An inspection
of contour diagrams published in this paper shows that the contour lines are fairly equidistant
in this valley, which means t" . it is much better to use a straight line in this region than a
polynomial.
In a one-dimensional WKB spontaneous-fission model the fission half-life is cunnected to
the penetrability by ?3:6%)
Ty =10"8%y/p (18)

where the value wg = 1 MeV/h is used for the frequency of assaults on the barrier. The

probability P of penetrating the barrier V(r) at the energy Eyp is given by %)
' P= ——IT (19)
1+e
where v (2B "
K= 2/” {—# [V(r) - Eo]} dr (20)

Here V(r) is the barrier encrgy along the selected path. The penetration energy Ep is the
ground-state energy plus the zero-point energy in the fission direction at the ground state.

The function B,(r) is the inertia with respect to r associated with motion in the fission
direction. An important aspect of the semi-empirical approach is to deduce asymptotic prop-
ertics of the semi-empirical inertia from arguments abhout the expected general propertics of
the inertia at small aud large r values. Thus, at large distances we expect B,(r) to anproach
the value %M appropriate to separated symmetric fragments. At small r values the inertia is
expected to be considerably higher than what is given by a hydrodynamical irrotational-flow
model, due to microscopic quantum-mechanical effects. In the semi-empirical model these
asymptlotic constraints are taken into account by relating the inertia B, to the incrtia 87
corresponding to irrotational flow by 9%)

B, = p = k(D™ - p) (21)

where k is a semi-empirical constant and jz ig the reduced mase of the final sy mmetric fragments,
The k parameter accounts for the inerease of the inertia above the hydrodynamical value due
to quantum-mechanical eflects.

The irrotaveaal inertia has been numerically caleulated fer y-family shapes, which are

deflned in terms of the saddle-point shapes for an idealized uniformly charged liquid drop ®).
‘e
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We approximate the numerical results by ¢7)

i _ o 1 _12_8( _E)]
By —p= guexp |- (r - g (22)

In another study Randrup et al. 37) varied the coefficient in the exponential term, which af-
fected the rate at which the semi-empirical inertia approached the asymptotic limit 4 = 1 M.
However, for the old fission valley this variation did not significantly decrease the root-mean-
square deviation between the calculated and experimental fission half-lives. They therefore
chose a value close %o 1‘,‘? and determined k = 11.5 from an adjustment to experimental data.
The approach 23) was referred to as semi-empirical with one adjustable parameter.

In our case, we use the value k = 16, which was determined in®?) from an adjustment to
five actinide fiasion half-lives. In that adjustment the root-mean-square deviation between the
logarithms of the calculate:: and experimental half-lives was 2.5 !f this method of calculating
fission half-lives does not diverge outside the region of adjustment we may consequently expect
a deviation between calculated and experimental fission half-lives of two to three orders of
magnitude. We therefore call the agreement between calculated and experimental results good
if the deviation is less than about three orders of magnitude.

The value k = 16 obtained in %7) is larger than the value k = 11.5 used in ref.??). The reason
is that fission barriers calculated with the folded-Yukawa single-particle microscopic model are
systematically thinner than those obtained with the Nilsson modified-oscillator single-particle
potential.

In our study here we have calculated fission barriers also in the ¢ parameterization. We use
those results to determine the barrier along the old valley. We have calculated two-dimensional
symmetric potential-energy surfaces as functions of ¢; and ¢4, with single-particle parameters
for 772110. These calculations yield slightly lower values for the saddle on the top side of the
mountain around r = 1.35 than the res.lts of the calculation in the three-quadratic-surface
parameterization, which are presented in the form of contour dia-:ams in this paper. We also
take mass asymmetry into account when we determine this saddle-point height. The effects
of mass asymmetry we take from unpublished old calculations in terms of ¢; and ¢g at the
second saddle. The shape coordinates for that study were exactly as in?4), and the calculation
used a slightly different set of parameters compared to the present calculation for the folded.
Yukawa single-particle potential. It u~ed the droplet model for the macroscopic energy, with
a paramcter set given by ?). Although a slightly diffrrent model was used. which results in
different barriers, we only take the rrduction in the barrier hright due to mass asymmetry
from that calculation. The error in the value for the sduction in barrier height, in the old
valley, that results from using the different madel is very low, less than 200 KeV out of a total
reduction of 1 to 2 MeV. We take the valur for the zero-point energy from unpublished results
from our 1981 ground-state mass calculaticn 44%).

Investigation in refs. 3-33) show that the short spontaneous-fission half-life for #*Fm is not
due to a non-existent second peak in the fission barrier. Instead it is due to a much lower
inertia associated with fission in the new vally., We have investigated the single-particle level
structures in the uld and new valleys. In figs. "5a and 15b we shaw proton single-particle levels
f=: shapes evalving from a spherical shape inta the two valleys, Figure 15a shows proton levels
for liquid-drop saddle-point shapes or y-fmily shapes *), which are shapes corresponding to
fission-barrier shapes along the old fission path. Figure 15b shows proton levels for intersecting
spheres. These shapes correspond to shapes at the lower limit of @ in the contour diagrams
exhibited in fig. 4. This limit is slightly lower than the new valley for 2*Fm, but we have
alvo calcvlated the lovels in the new valley for #*Fm and they are practically indistinguishable
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from the levels for intersecting spheres. Since the new valley is alightly different for different
nuclei and also because a valley is a slightly less well-defined concept than intersecting spheres
we display here only the levels corresponding to the intersecting-spheres family of shapes.

It is immediately clear from inspecting figs. 15a and .5b that the level structures in the two
valleys are radically different. In the old valley the level crossings continue through the entire
deformation range studied, which for the heavy elements studied here corresponds to pene-
trating the entire fission barrier. Although gaps corresponding to ground-state and isomeric
minima are present no truly large-scale structures are present. The level structure appears
fairly random. Figure 15a together with the microscopic calculations discussed above explain
the success of fission half-life calculations based on a smooth semi-empirical inertia 33:37),

For the new valley it is clear that our current form of the semi-empirical inertia is inad-
equate. In its presert form the inertia reaches the limiting value }M at infinity. However,
since in the rew .alley the fragments scparate already at r = 1.39 the asymptotic limit }M
should be reached already here. In addition we see by inspecting fig. 15b that the magic gap
Z = 50 extends far inside the point of two touching spherical nuclei. The gap extends into
such compact shapes as r = 1.20. To a somewhat lesser extent the presence of Lhe gap is seen
as far as r = 1.07, which is the deformation corresponding to the first saddle. Over this entire
region the levels are parallel and there are very few level crossings compared to the situation
in the old valley. We have found that also for neutrons the N = 82 gap extends far inside
the point of touching at r = 1.59. Thus, in this region, already before separation, the inertia
should have reached or be very close to its limiting value of }M .

Since we have, from general arguments been able to set some limits on the inertia in the
new valley, we will investigate a generalization of the semi-empirical inertia for the old valley
given by eq. (21), which allows for a natural and simple way of fulfilling the limiting conditions
for the new valley. For the new valley we propose

By = p= flror k(I = pi) 23
where
Toc =T \"
o= | (E55) - v s
0. r>r.

and roc is the v vialue where the new valles reaches seission, which in our investigation here in
set equal to the r value for two tonching sphetes, which is vy, = 1.59. The inertia in oq. (23)
has the property that it is equal to the old inertia at the spherical shape and equal to 1 Af
at the scisslon point, two limiting con litions we want to fulfill. In addition, it appro; ches the
limiting value horizontally for sn > 2 That ia, the derivative at this poin® is continuous, which
in also a reasnnable requirement. By varying m we change how fast the inertia approach = ite
limiting value of }M. The level structure indicates that the inertia I close to this value far
innide the point of touching.

Alsa at the ground state one can expeet the jnertia to be lewer for shape changes that
evolve towards the new vallry, comparmd to shape changes that lead to the old valley. This
can occur because the inertia is not related to the values of the shape coordinates themselves
but instead to their derivatives, or more procisely, to the direetion of change of the shape
coordinates, Quantitative support for this can he found in the level diagrams in figs 15 and
15h, Often the distance between lovels at level cpovsings is larger in fig 15b thap in fig 10a
Ax a specific example we compare the level crowing of the proton states lli-l'."'! utipnating
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from the il spherical state at —0.8 MeV and [402;] originating from the spherical state d3
at —11.0 MeV. In fig. 15a, which corresponds to a path leading into the old valley, the crossing
occurs at r =5 1.0 and at an energy of about —6.0 MeV, with a splitting at the crossing of about
0.3 MeV. In fig. 15b, which corresponds to a path that leads to the new valley, this crossing
occurs at about the same location but the splitting at the level crossing is now 1.5 MeV. Thus,
the contribution to the inertia from this level crossing should be considerably smaller in the
latter case than in the former. The situation is similar at many other level crossings.

We have calculated the fission half-life for >*Fm along the new valley with the inertia given
by eqs. (23) and (24) and m = 2, the simplest choice. The calculated fission half-life under these
assumptions is 9s, or about 4 orders of magnitude larger than the experimental value. It is still
nevertheless fairly close to the experimentally observed value of 10~!! y. One should also note
that in the macroscopic-microscopic model it is often difficult to reproduce over a small range
of neutron numbers the entire magnitude of an effect that experimentally occurs over a range
of 2 neutron numbers. In the theoretical model these changes often develop over a slightly
larger range of neutron number. Thus, it is not surprising that in this particular case we do
not reach the ms range of half-lives until 2°Fm, as is seen in table 1. We also observe in table
1 that the calculations in the old valley completely fail to reproduce the experimental half-lives
for the heavier Fm isotopes. Based on the above discussion and on the results obtained below
we choose m = 2 for the inertia in the new valley. The semi-empirical inertias for the old and
new vallevs are plotted in fig. 16.

Our discussion above leads to a new propasal for the mechanism behind the short half-life
for **Fm. The mechanism is not, as previously proposed, the disappearance of the second
peak in the barrier below the energy of the nuclear ground state. Instead, it is the lower
inertia ansociated with the new path to compact scission shapes. Thus, we find that it is not
an accident that there is & sudden drop in fission half-life at the same time as highly energetic
symmetric fission fragments appear, but instead that the two events are intimately connected.

The proposed inertia for the new valley is most appropriate for Z near 100 and N near
164. Below we sae that . the potential-energy surfaces the new valley remains for Z and N
values rather far from these values. For such nuclei we expect that the inertia is higher than
the one proposed here, Since we have shown that a consistent explanation of fission-barrier
heights and fission half-lives requires radically different inertias for different nuclei, it is clearly
desirable to develop a model for the microscopic inertia in the different valleys. Such a project
is & major undertaking and outside the scope of this investigation, and for the new valley we
consistently use the simp'e preseription given by eqs. (23) and (24). We expect that this leads
to some underestimate of the fission half lives of nuclei far from ™ km.

We give calenlated spontancous fission half lives for nuclei ranging from Cf to 7 - 102
in table 1. For even nuclei some of the caleulated half lives are plotted and compared to
experimental data in fige. 17a 17, Some half lives along the old path are pnch longer in this
calculation than those obtained earlier ™). This oceurs becanse we have here also included the
effect of eq deformations on the gronnd-state energy. This additional degree of freedom lowers
the ground state by up to about 1 MeV around 2*?Fm, which explains the 6 order of magnitude
increase in half lives we obtain in this region relative to those in the previous study,

Figure 17a shows caleulated and experimental fission half hves for Cfisotopes, Solid cireles
topresent expetimental data, open triangles calenlated half lives for fission along the new path
and open squares calenlated half lives fin fission along the old path, The dominating, path in
the path that for a particular N value gives the lowest calenlated fission half life, The symbols
corresponding, to the dominating, path are connected by a dashed line and represent the results
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that are to be compared with experimental data. Fission kalf-lives for the new path cannot be
calculated until this path is clearly present in the calculated potential-energy surfaces. This
usually occurs at N = 156 or N = 158. Usually w= sce in figs. 17a-17e that for low N values
the half-life along the new path is longer than the experimental value. In most of these cases
the saddle along the awitchback path is lower than the outer saddle in the new valley and it
is likely that if the half-life along the switchback path could be calculated the results would
show that the switchback path is the dominating path and the calculations would probably be
in better agreement with experimental fission half-lives.

There is a large discrepancy between calculated and experimental data in the vicinity of
N = 152. When analyzing the deviations between data and calculations one must be aware
of the sensitivity of the calculated results to changes in the various quantities that enter the
fission half-life calculation. We find that an increase of the ground-state energy of 2°Cf by
1 MeV decreases the calculated fission half-life fromn 10'24? y 10 1054° y. Since the error in the
mass model used to calculate the nuclear ground-state energy is 0.8 MeV 43), it is therefore not
unrcasonable to expect errors of this magniiude in calculated fission half-lives. However, in
many calculations 2384 the average deviation between calculated results and experiment is,
surprisingly, much smaller than the above ohservation would lead one to expect. Typically, the
deviation is only about 2 orders of magnitude. This good agreement may have been fortuitous,
in which case it is of course wrong to try to explain the large discrepancies we here obtain
between calculated and experimental data for Cf as due to some other effect rather than to
the known average model error for the nuclear ground-state energies.

One may, on the other hand, try to make a more detailed argunient to investigate if one can
expect the errors in the calculated fission half-lives to be smaller. The error in the mass model
is somewhat larger in the region of light nuclei than in the actinide region, where in contrast
the error in smaller than average and fairly slowly varying*?). In addition, some of the error
in the actinide region is removed by the ¢; shape degree of freedom, which we consider here.
Apart from errors in the calculated ground-state energy, other factors that we expect to give
rise to errors in the calculated fission half-lives are our simple model for the nuclear inertia and
the fact that we do not calculate fission half-lives along the switch-back paii. We find that an
averall decrease in the inertia by 5% decreases the calculated half-life of 239Cf from 101247 y
to 10'* y. An explanation for the largest discrepancies between caleulated and experimental
fission half-lives may be that we do not caleulate the penetrability along the switchback path.
We will make some  itional comments on the effect of the switchback path in the discusion
of Fin below,

Figure 17b shows fission hall-lives for fermium isotopes. For the heaviest Fim isotopes
the half-lives caleulated for the new valley are considerably lower than the half lives for the
old valley. For ¥ 'm the results seem to indicate that fission occurs into the new valley,
contrary to what is suggested by experimental results on fission-fragment mass and kinetic.
energy distributions '), llowever, an inspection of the ealeulated potential-energy surface for
Bem in fig. 12a shows that there is a saddle between the new and old valley at v - 138
and a = 0.74, Thix is a saddle on the ko called xwitehback path, which has been extensively
discussed in our previous study ™). 1t is elear from this fignre that the half life for #**Fm along,
the awitchback path may be shorter than the half life into the new valley, Also, for lighter Fm
inotopes, fission may proceed initially along the new path to exploit the low inertia along this
path and later awitchback to the old valley. An inspection of fig. 7 for 22Fm, for example,
indicates that it is a very realistic possibility for this nucleus, It is therefore onr view that a
censideration of half lives along the awitchback path wonld reenove some of the discrepandies
between caleulated and experimental fission half Tives in the region close to X152 for Fn,
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Cf and possibly elements beyond Fm. However, if the sensitivity of fission half-life calculations
to small changes in the barrier energies is considered, as discussed above for Cf, one must
consider the agreement between calculated and experimental half-lives in fig. 17b, as it stands,
to be commensurate with expectations.

Figure 17c shows fission ' "lives for No. For N = 156, and slightly beyond, figs. 13a
and 13b show that it is plausi... that the switchback path is the dominating path. This may
also be the case for lower N values and thus provides a mechanism for removing some of
the discrepancy between calculated and experimental values. For N = 156 and beyond, the
experimental fission half-lives remain fairly constant. This tendency is present, but somewhat
less pronounced, in the calculated results. Again, we expect this particular feature to be more
clearly present in the calculations if the switchback path is taken into account. For Rf, shown
in fig. 17d, the peak in the experimental fission half-lives that is present at N = 152 for Fm
and No has disappeared, but it is still present in the calculations. This peak is also present in
the calculated results for element Z = 106 shown in fig. 17e.

The properties of the calculated potential-energy surfaces for 2**Md and 2°Md and the
calculated spontaneous fission half-lives shown in table 1 provide an explanation of the mea-
sured half-lives of these two nuclei. The fission half-life for 22°Md is 32 d '3). This is 10 orders
of magnitude higher than the fission half-life of 381'm, which has one proton and one neutron
less than %°Md, even though in the absence of single particle effects the addition of protons
should lower the fission half-life. However, it is entirely reasonable to expect such a huge spe-
cialization effect from the addition of one add neutron and one odd proton in this region, since
our calculations show that the odd proton has the fairly high spin ;, with negative parity.

It is now possible to interpret the the experimental data obtained by '?) for ?**Md and
2%0Md in terms of our model. We expect high-Kinetic-energy fission to occur when the spher-
ical fragment shell cffects due to the approarh of *™Fm have reached a certain magnitude.
The symmetric fission products of **Fm arc 1?°Sn. A study of calculated ground-state shell
corrections?) showa that the effect on the shell correction of adding protons or subtracting
neutrons from '?Sn is similar. The reason is that in both cases the distance form the doubly
magic '3Sn is changed by the same number of nucleons, and in this region the neutron and
proton shell corrections behave in a similar way when particles are added or subtracted. Thus,
we cxpect that adding protons to ¥ Fm will have roughly the same effect on the kinetic-
energy distributions as subtra~ting neutrons, apart from charge effects. ‘The kinetic-cnergy
distributions for 3¥Fm and #**Md should therefore be similar, which is the case. Adding an
other neutron to #*Md yields 2Md, which according to our above arguments should have a
kinetic-energy distribution similar to that for #**Fm, which is also the case. The rapid change
in the appeatence of the kinetie energy distribution when going from 2**Md to #'Md is not
an odd-particle effect but is instead just a refloction of the rapidly changing fission properties
an 7P s approached. Qur caleulated half-lives are in rough agreement with data, in par-
ticular if one assumes that fission for 2"No occurs along the switchback path, exploiting the
lower mertia in the lower vallery. Mass asymmetric shape degrees of freedom which were only
calenlated for even systems would also be expected to lower the ridge on the switchback path
conniderably.

Our argument for interpreting the himodal fission as fission along a new valley followed by
a awitehback into the old valley is based partly on the fact that the fission half lives caleulated
along the old path for 26080, " No and ?Fm are 6, 6 and 11 onders of magnitude large
than the experimental half lives, respeetively, Sinee we feel it i a reasonable assumgaion that
the error in the model ix smaller than this mapnitude, it Hows that it is fiksion along the
switehback path that leads to acission in the old valley in most cases where himodal- fission i
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observed.

However, there is an additional argument for interpreting the switchback as the mechanism
for bimodal flssion that is independent of the accuracy of the theoretical fission half-life model.
Experimentally, the fission half-lives change extremely rapldly from nucleus to nucleus in this
region. For instance, from 2Fm to 238Fm the half-life changes by seven orders of maguitude.
At a transition point one might expect the half-lives for flssion through the two different
barriers to be similar, as a general rule. However, when the change acroas the transition point
is seven orders of magnitude it is unlikely that the two half-lives are equal to within two orders
of magnitude. It might perhaps occur in one case but experimentally there are four cases
of observed bimodality and It Is extremely unlikely that the two barriers have approximately
the same half-life in all four cases with such violent changes in half-lives across the transition
points.

Table 1 shows additional half-lives. Again, the agreement between calculated and experi-
mental half-lives is commeasurate with expectations despite a few large deviations. We expect
that fission half-lives on the rock of stability around 372110 are strongly affected by the prescnce
of the magic-fragment neutron number N = 2 x 82 and by the deformed magic ground-state
neutron number N = 162. The magic-fragment neutron number N = 2 82 has a destabllizing
effect, whercas the deformed magic ground-state number N = 162 han a stabilizing effect. In
our model these two effects approximately cancel each other, an can be seen from the half-lives
calculated for the new valley for Z = 106. The calculated half-lives vary by only one order of
magnitude from N = 156 to N = 164. For Z = 108 there in an Increase by three orders of
magnitude in the calculated fission half-life from N = 156 to N = 162, Most carlier calcu-
latir-.« that consider only the old valley overestimate the finsion half-lives of elements on the
roch uf stability.

4.5 KINET.C ENERGIES

Experimentall) 7) it Is observed that for ™ Fm the low-energy and high-energy peaks in the
kinetic-energy distributiona are centered at 200 and 235 MeV, respertively. These experimen-
tal observations ean be understood qualitatively In terms of our calculated potential-energy
surface for Fm, The final fisslon:fragment hinetic energy in approximately equal to the
prescigsion contribution plus the Coulomb energy of two spheres separated by a distance r,,.
Hecause the value of ry is smaller In the new, lower finsion valley than in the old, upper finsion
valley, the kinetic energy will be correspondingly higher In the new valley than In the old valley.
However, a precise caleulation of the fission fragment kinetic energy requires a conslderation
of dynamiral effectn, which in outside the scope of the present investigation.

4.6 ADDITIONAL IMPLICATIONS OF THE NEW VALLEY
4.6.1 Effect of magic numbera on heavy-ion fusion

The potential- energy surfaces for thore nuclei where the fragiment shell effects lead 1o a new
valley illustrate the anticipated heweficial influenee of magic target projectile combluations on
furion and evaporation residue cross sections in heavy ion reactions.

First, the mapicity of the fragments lowers the enetgy of the two tonching sphere confign
ratlon relative to what it would be In the abuence of shiell effects, It follows that in cases whetre
a compound nucleus in formed by a dynamical deseent from the two touching sphete confign
ration, the componnd nucleas will he formed with less excitation enerpy than If frnr‘lu.ﬂnl shell
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effects were absent. The resulting relatively cold compound nucleus has then a better chance of
surviving, without fissioning, the subsequent stage of de-excitation by particle emission. The
result is an enhancement of evaporation-residue cross sections.

The second, more subtle, eflect has to do specifically with the appearance of a valley in the
potential-energy surface and the effect this has on minimizing the need for an extra push to fuse
heavy nuclei®®), Roughly speaking, this extra push, or additional collision energy in excess
of the energy of the two-touching-sph-re configuration, is needed when, roughly speaking, *he
electric repulsion after contact exceeds the nuclear attraction between the two fusing nuclei.
Ar will be argued presently, this attraction is considerably greater for nuclei that manage to
preserve approximately their apherical shapes than for nuclei that allow a neck to form between
them. As a result, magic nuclei that resist as far as possible the growth of a neck, beyond tue
minimum defined by the geometry of overlapping spheres, experience a stronger compactifying
force and can evolve ‘owards fusion in the face of a stronger electric repulsion than if shell
effects were abaent.

The semi-quantitative argument for this mechanism is as follows. According to the proxim-
ity force theorem ™) the force between two nuclei in the form of portions of slightly intersecting
spheres is approximately 4x Ry, where 4 is the specific surface energy and I is the reduced
radius of the two spheres, equal to Ry R;/(Ry + R3). On the other hand, the attraction that
is provided by a cylindrical neck of radius ¢ is only 2xc7, the rate of increase of the cylinder’s
surface energy with the cylinder’s length. Now the condition that the stronger attraction 47 Ry
should persist is that the configuration of the fusing systemn should stay as close as possible
to that of portions of intersecting spheres, corresponding to the lower boundary, to the left
of r = 1.5874, of the contour maps in this paper. This means that there should be a force
resisting the growth of the neck. In other words, there should be a valley running close to that
boundary. So long as such a valley is present, the attractive nuclear force will remain relatively
large and the need for an extra push in fusion will be minimized or avoided entirely. The new
valley in a potential-energy surface such as in fig. 3d demonstrates that fragment shell effects
such as those in '328n can survive in configurations with even a fairly large window between the
two halves, thus providing a mechanism for mitigating the extra.push hindrance in reactions
between near magic nuclei. We helieve it is quite likely that this mechanism is responsible for
the anomalously low hindrance factors in fusion reactions such as ®Ca - 3Wp), 5T

4.0.2 The new valley and nuelear moleeules

So long ax fragment shell effects can be connted on to confine the nuclear configuration to the
vicinity of portions of overlapping spheres, the possibility arises of a straight forward balancing
of the forces acting in the separation degree of fieedom in such a way that a nuclear molecule
would result. Roughly speaking, this requires that the eleetrie repulsion should balanee the nu-
clear foree, resulting in a potential energy with a meta stable minimum, ‘That such a minimum
can, in fact, be formed under suitable conditions is illustrated in fig. 4 for 2**Fm. Lere the
solid circle at v = 1,30, & - (.70 can reasonably he deseribed ax corresponding to a molecular
configuration of two 17"§y nuclei in fairly intimate contact, stabilized against neck grawth by
the fragment shell effects and against fusion or teseparation by a balanee hetween nuelear and
olectrie forcen,

In canes where anpilar momentam is present, a similar situation may result if the charge
on the system Is reduced, mo that the sum of electrie and centrifupal fotees continnes to balaner
the nuclear forcen. Molocules consisting, of more than two migic or near magic nuclel might
alvo prove meta stable when their sizes and the amount of angular momentum are similuly
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adjusted.

5 Summary

Our most important results are

Shape dependences have to be considiered for the Wigner and A® terms.

An appropriate, fairly large smoothing range has to be used in the Strutinsky shell-
correction method.

For elements close to Fm a deep valley leading to compact scission shapes is a very
prominent feature in the calculated potential-cnergy surfaces.

From a study of single-particle level diagrams and a calculation of fission barriers and
fission half-lives we conclude that there is a much lower inertia associated with fission in
the new valley than in the old valley.

There are three paths in the calculated potential-energy surfaces, namely the old path,
the new path to compact scission shapes and a switchback path from the new path to
the old path.

Fission may initially proceed along the new valley and switchback to the old valley at a
later stage during the process.

The short half-life »f ¥®*Fm is due to the low incrtia in the new valley and not to the
disappearauce of the second peak in the fission barrier.

The new valley is present at least up to Z = 110 for ncutron numbers close to N = 2x R2.
Its existence lowers the fission half-lives of some of these elements relative to predictions
that do not consider the new valley.

Odd-particle specialization effects substantially increase the calculated fission half-lives
alr in the new valley.

Fission half-lives have been calculated for more that 60 nuclei. Because of the extreme
sensitivity of the calculated fission half-lives to small changes in the ground-state poten-
tial energy, calculated and experimental half-lives agice with each other to within our
expectations. Some remaining deviations suggest that fission along the switchback path
hak to be considered and also that a microscopic model for how the inertia changes as
ole moves away ffom magic-fragment neutron and proton numbers should be developed.
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omparison of fission half-lives calculated for the normal

-l wSp ehechi{Erenp arnnos s1ala des fsainrs.73,74)

Z N A Calc. old path Calc. new path Exp.

98 146 244 12000 y

98 148 246 10572 y 2000 vy
98 150 248 1098 y 32000 vy
98 152 250 10197 y 17000 y
98 154 252 10°16 y 86 y
98 156 254 35000 y 61 d
98 158 256 24 y 42 d 12 m
98 160 258 630 y 1.7 d

98 162 260 22000 y 19 s

98 164 262 170 d 1.3 us

100 142 242 6.0 us 08 ms
100 144 244 2.2 ms 3.7 ms
100 146 246 23 m 4 s

100 148 248 93 y 11 h
100 150 250 1059% y 6.9 y
100 152 252 10873 y 150 vy
100 154 254 11000 vy 062 vy
100 155 255 107%° y 2500 y 10000 y
100 156 256 13 y 49 d 2.86 h
100 157 257 105° y 320 y 131 y
100 158 258 130 d 8.7 s 0.38 ms
100 159 259 63 y 15 s 1.5 s
100 160 260 730 y 5.9 ms

100 162 262 18 y 53 pus

100 164 264 37 d 5.7 pus

101 158 259 51000 vy 28 d 100 m
101 159 260 1087 y 1.1 y 32 d
102 146 248 130 us

102 148 250 14 s 0.25 ms
102 150 252 32 d 8.6 s
102 152 254 21 y 6 h
102 154 256 31 d 18 m
102 156 253 13 h 5.9 s 1.2 ms
102 158 260 55 d 630 ms 100 ms

18
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TABLE 1 (continued)

Z N A Calc. old path Calc. new path Exp.
102 160 262 79 d 33 us 5 me
102 162 264 36 y 13 ps

102 164 266 13 d 15 ps

103 158 261 23 y 50 h 39 m
103 159 262 4200 y 15 d 216 m
104 148 252 35 pus

104 150 254 430 ms 0.5 ms?
104 152 256 29 h 6.9 ms
104 154 258 18 & 14 ms
104 156 260 59 s 94 ms 21 ms??
104 158 262 15 m 10 ms 47 ms
104 160 264 42 h 17 pus

104 162 266 12 d 69 us

104 164 268 11 h 22 pus

105 157 262 19 d 71 d 46 =
106 150 256 26 ms

106 152 2358 16 m

106 154 260 30 m 7.2 ms
106 156 262 31 m 1.1 ms

106 158 264 34 m 150 s

106 160 266 652 m 100 pus

106 162 268 140 d 3.7 ms

106 164 270 22 d 240 s

107 161 268 11 m

108 156 264 220 ms 10 ps 201 ms
108 162 270 110 d 72 ms

109 161 270 10'7® 210 vy

109 162 271 10'%% y 150 d

109 163 272 10%% y 10558 y

39
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Potential energy surface with ¥ = 1.4 x Ay in the Strutinsky method, but
without inclusion of the shape dep2ndences of the Wigner and A° terms. The
ridge between the new and old valleys seems too high to allow any branching
into the old valley, as indicated by experiment.

Potential-energy surface corresponding to symmetric shapes, showing a ridge
blocking the new valley and two saddles at the beginning of the oid valley. One
saddle is located at r = 1.38 and & = 0.85 and the other at r = 1.48 and
o = 0.78. Our interpretation is that fission initially proceeds along the new
valley but later along the switchback path across the lower saddle into the old
valley. The switchback saddle is lowered by mass-asymmetric shape degrees of
freedom.

Potential-energy surface for a nucleus far from nucleon numbers that favor ihe
existence of the new fission valley. Only every fifth contour line is plotted for
energies 2bove +25 MeV. The mountain at the location of two touching spheres
is more than 30 MeV high. Only the old fission valley ‘5 present in this contour
map.

Also for this high proton number we find a fairly prominent new valley close
to the doubly magic neutron number 2 x 82. The fission half-life is lowered
relative to earlier expectations, because of the presence of the new valley. In
this figure and some of our later figures, only every fifth contour line is plotted
for energies below —25 Me\V'.

Potential-cnergy surface for a conventional superheavy nucirus. Surprisingly
there is a second. lower valley present in this contour map. relatively far from
doubly magic fragment nucleon numbers.

Effect of specialization energy on the structure of the calculated potential
energy suiface. The high-Q value of the ground-state spin substantially in-
creases the fission hall-lifr compared to a value interpolated between neighbor-
itg even nuclei. There is a low ridge separating the new fission valley from
the old fission valley. Experimental results ') show that most fission.fragment
Kinetic energies are low.

Ridgr that is 1 MeV high separating the new fission valley from the old fission
valley. Experimuental resuits 1Y) show that most fission-fragment kinetic energies
are high, but that a seeond smaller component with low kinetic energies is also
present,

Saddle region between the new and old fission valleys. The line @ = 0 corre
sponds to the line r - 1.4in fig 4. The new valley is to the lower loft and the
old valley ta the pper right.

The potential energy in the @ oy plane at 1 1.6, The saddle separating the
twn valleve in cloarly lowered by mass ass mmetne shape degrees of froedom
The minimum at the lower left corresponds to the onter saddle in the new
valley seen in fig. 4. as discussed i the text, the energy at the saddle i this
figure is abont 0 75 Mo\ compared 1o 15 MeVoan fig 4. The difference i< due 1o
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interpolation inaccuracies in fig. 4, which are particularly large near the outer
saddle because of the steep rise in the energy with decreasing &.

Shapes corresponding to the contour map in fig. 11b. Shapes correspondirg to
the new valley are in the lower part of the figure and remain symmetric. As the
switchback path from the new valley crosses over the saddleat r = 1. 4and o =
0.75 into the old valley, asymmetry becomes n.ore and more developed. As we
discussed in the text, we have not conserved r and o exactly as mass asymmetry
develops. Nevertheless, it is clear from an inspection of this figure that as
the asymmetry develops the overall extension remains approximately constant
for fixed values of r. 7T..is is a desirable property for a more straightforward
intecpretation of the calculated potential-energy contour maps.

Contour map showing the vicinity of the outer saddle along the new valley
and the saddle along the switchback path between the new valley and the old
valley. The energy has been minimized with respect to the mass-asymmetry
coordinate az for fixed valiues of the other symmetric three-quadratic-surface
shape parameters. As discussed in the text, this means that r and o are not
exactly conserved as ag varies. However, this does not influence the Arights of
the saddle points that are obtained from the calculation. The new valley enters
in the extreme lower left of this figure and fissior may either evolve into the old
valley across the saddle at r = 1.4 and @ = 0.75 or proceed in the direction of
compact scission shapes across the zaddle at r = 1.6 and & = 0.74. These two
saddles are of about equal height.

Oute: part of the new valley in a calculation that does not include shape de-
pendences for the Wigner and A terms. Here there is no outer saddle in the
new valley, Access to the old valley is blocked by prominent ridge. As discussed
in the text, these results contrast somewhat with those obtained by a Polish
group ™). where there is no ridge hetween the old and new valleys at large
valurs o 7,

Nueleus elose to the point of transition from fission into the old valley to fission
into the new valley. Here a low ridge with a saddle that is abont 1 MeV higher
than the switchback saddle blocks aceess to compart seission shapes,

Well developed new valley, ‘The switehback <addle is 2 MoV higher than the
onter sildle along the path to compact serssion shapes and should block acerss
to the old fission valley.

Outer uew valley region for 2°*Cf The potential energy han been minimized
with respect to mass asymmettic shape degrees of freedom at each grid point.
The end of the new valley is bloe hed by a aarlddle that is about 2 MeV higher
than the «addle on the switchback path and the fission path is deflected across
the vaeldle on the switchbarh path into the ald valley

Potential enetpy surface for a peution rich Cfsotape At this high neutron
numuoer the wuddle on the switchback path is about the same height as the
vater saddle in the new ey Thas, thiv nucddens pay be at the trapation

between low hinetie etergs and lopgh hinetic energy fissien,
L]
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Fig. 14a For this nobelium isotope a low ridge sits at the end of the new valley. Experimentally ?)
it is found that this isotope primarily fissions into fragments with low kinetic
energies.

Fig. 14b At this neutron number, N = 160, the outer saddle in the new valley is about

2 MeV lower than the saddle on the switchback path, which suggests that fission
of this isotope is most.y of the high-kinetic-energy type.

Fig. 15a Proton single-particle levels corresponding to fission along the old valley. The
spherical Z = 82 gap is centered at —9.2 MeV. No truly large-scale structure
is seen. On a smaller scale there are gaps in the level spectra that for actinide
nuclei give rise to deformed ground states and secondary minima.

Fig. 15b Proton single-particle levels corresponding approximately to fission along the
new valley. The Z = 2x 50 gap is very prominent and is not completely damped
out until slightly outside the first peak in the barrier. The structure suggests
that *he inertia ia close to the reduced mass carly during the barrier-penetration
prr . We also note the additional feature that already close Lo the ground
state the inertia along the new path can be expected to be lower than along
the old path, since the splittings at level crossings are often substantially larger
here than along the old path.

Fig. 16 Comparison between the semi-empirical inertia along the old path, the semi-
empirical inertiax along the new path for m = 2 and m = 4, the irrotational
inertia along the old path and the reduced mass . The inertia along the new
path for the parameter chuice we seiect here (m - 2) is represented by a solid
line. This choice yields a somewhat higher inertia than m = 4, which was the
choice made in our previous ™) study.

Fig. 17a Experimental fission half-lives compared to caleulated half-lives for fission along
the old and new valleys. A new valley is present in the caleulated potential-
energy surface only for N > 5%, When half-lives have been calculated for
both valleys for a particular neutron number, the shorter (dominating) caleu-
lated half-lives should be compared with experimental values. The diserepancy
between calculated and experimental results in the vicinity of N = 152 may
arise from either an error in the caleulated ground state energy or the negleet
of fission along the third, s vitchback path, as discussed in the text,

Fig. 17b Rapidly changing experimental and calenlated fission half lives. The discrep
ancy around N .. 152 may be partially removed through the calealation of
fissicon half-lives aloag the switchiback path,

Fig. 17c Nev experimental feature of faitly constan® half life from N 156 and beyond.
This feature is moderately well reproduced by the ealenlations,

Fig. 17d Nearly constant experimental fission half life ar o function of N, The theoretical
half lives are too high near N - 1682, However, the discropancy cortespoqls
only to an error of al nut 1 MeV in the calonlated ground state enerpy

Fig. 170 Fairly constant calenlated fission half life in the new valley beyoand N 176
This shows that the destabilizing effect of the spherical mapie fl‘il}'_llll'lll.lll'“‘Illll
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number N = 2 x 82 approximately cancels the effect of the deformed magic-
ground-state neutron number N = 162.
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